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CENTRAL LIMIT THEOREMS FOR COMPOUND PATHS ON THE

2-DIMENSIONAL LATTICE

EVAN FANG, JONATHAN JENKINS, ZACK LEE, DANIEL LI, ETHAN LU, STEVEN J. MILLER,
DILHAN SALGADO, JOSHUA SIKTAR

Abstract. Zeckendorf proved that every integer can be written uniquely as a sum of non-
consecutive Fibonacci numbers {Fn}, and later researchers showed that the distribution of the
number of summands needed for such decompositions of integers in [Fn, Fn+1) converges to a
Gaussian as n → ∞. Decomposition problems have been studied extensively for a variety of
different sequences and notions of a legal decompositions; for the Fibonacci numbers, a legal
decomposition is one for which each summand is used at most once and no two consecutive
summands may be chosen. Recently, Chen et al. [CCGJMSY] generalized earlier work to
d-dimensional lattices of positive integers; there, a legal decomposition is a path such that
every point chosen had each component strictly less than the component of the previous
chosen point in the path. They were able to prove Gaussianity results despite the lack of
uniqueness of the decompositions; however, their results should hold in the more general
case where some components are identical. The strictly decreasing assumption was needed
in that work to obtain simple, closed form combinatorial expressions, which could then be
well approximated and led to the limiting behavior. In this work we remove that assumption
through inclusion-exclusion arguments. These lead to more involved combinatorial sums;
using generating functions and recurrence relations we obtain tractable forms in 2 dimensions
and prove Gaussianity again; a more involved analysis should work in higher dimensions.
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1. Introduction

Among the many fascinating properties of the Fibonacci numbers is the following observa-
tion, credited to Zeckendorf [Ze]: Every positive integer admits a unique representation as a
sum of non-adjacent Fibonacci numbers {Fn}, where1 F1 = 1, F2 = 2 and Fn+1 = Fn + Fn−1.
Interestingly we can treat this property as an equivalent definition of the Fibonacci numbers:
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This work was supported by NSF Grant DMS1561945, Carnegie Mellon and Williams College.
1If we started with F0 = 0 and F1 = 1, then F2 = 1 and we trivially lose uniqueness.
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they are the only sequence from which every positive integer can be decomposed uniquely as
a sum of non-adjacent terms. It turns out that there is often a relationship between rules for
legal decompositions and sequences {Gn}, and the literature is now filled with many results
on properties of the summands in legal decompositions of numbers in intervals [Gn, Gn+1) as
n → ∞. These range from the mean number of summands growing linearly, with the factor
related to the roots of the characteristic polynomial of the recurrence, to the distribution of the
number of summands converging to a Gaussian, to the distribution of gaps between summands;
see for example [BDEMMTTW, BILMT, Br, Day, DDKMMV, FGNPT, Fr, GTNP, Ha, Ho,
HW, Ke, Lek, MW1, MW2, Ste1, Ste2] and the references therein.

Most of the sequences studied have been one-dimensional. Additional sequences, such as
those in [CFHMN2, CFHMNPX], appear two-dimensional but can be converted into one-
dimensional sequences and attacked using existing techniques. This motivated Chen et. al.
[CCGJMSY] to consider a true multi-dimensional sequence by looking at paths among lat-
tice points with non-negative integer coefficients. They defined a legal decomposition in d-
dimensions to be a finite collection of lattice points for which

(1) each point is used at most once, and
(2) if the point (i1, i2, . . . , id) is included then all subsequent points (i′1, i

′
2, . . . , i

′
d) have

i′j < ij for all j ∈ {1, 2, . . . , d} (i.e., all coordinates must decrease between point in the

decomposition and the next one).

They called the path of chosen lattice points a simple jump path; at each step, each
component was strictly less than the corresponding component of the previous step. One can
construct a sequence on the lattice in many ways. For example, in two dimensions one can go
along diagonal paths parallel to y = −x and at each lattice point adding the first number which
cannot be legally represented. The situation is slightly more involved in higher dimensions,
though for most of the problems studied the values of the ordered points do not matter; what
matters is the geometry of the lattice walks. In (1.1) we illustrate several diagonals’ worth of
entries when d = 2. Unlike for the Fibonacci sequence, we find that the uniqueness of these
decompositions fails (for example, 25 has two legal decompositions: 20 + 5 and 24 + 1).

280 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
157 263 · · · · · · · · · · · · · · · · · · · · · · · ·
84 155 259 · · · · · · · · · · · · · · · · · · · · ·
50 82 139 230 · · · · · · · · · · · · · · · · · ·
28 48 74 123 198 · · · · · · · · · · · · · · ·
14 24 40 66 107 184 · · · · · · · · · · · ·
7 12 20 33 59 100 171 · · · · · · · · ·
3 5 9 17 30 56 93 160 · · · · · ·
1 2 4 8 16 29 54 90 159 · · ·

(1.1)

These simple jump paths have a severe limitation as every coordinate must decrease. Thus
in (1.1) we had to add 5 to our 2-dimensional sequence in the (2, 3) location, as we cannot use
4+1 to get 5 as that is only horizontal movement. This strict decreasing condition was needed
in [CCGJMSY] to obtain simple closed form combinatorial expressions, which were then well
approximated. Finally, this led to a proof that the limiting behavior of the distribution of the
number of summands converges to a Gaussian.

This alternative, more general formulation leads to what we call a generalized jump path.
Formally, a generalized jump path from the lattice point p ∈ N

d is a sequence of lattice points
where each point is used only once, and if the point (i1, i2, . . . , id) is in the sequence, then each
subsequent point (i′1, i

′
2, . . . , i

′
d) must satisfy the following properties:
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• for all j ∈ {1, 2, . . . , d}, ij ≥ i′j , and

• for at least one k ∈ {1, 2, . . . , d}, ik > i′k.

These conditions imply that for each point in the sequence, at least one coordinate must
decrease while the remaining coordinates cannot increase. Below is the number of generalized
jump paths in two dimensions from the point (i, j) for i, j ≤ 3.

...
...

...
... . .

.

8 40 152 504 · · ·
4 16 52 152 · · ·
2 6 16 40 · · ·
1 2 4 8 · · ·

(1.2)

We can find a recursive formula which allows us to calculate the total number of generalized
jump paths starting at the point p = (p1, p2, . . . , pd). For convenience we include the require-
ment that all paths end at one point outside the lattice, at the origin; note moving directly to
the origin is equivalent to not choosing any additional points in a path and is thus considered
a legal option. If S((p1, p2, . . . , pd)) represents the total number of paths starting at p, then
we may do the following: partition all the generalized jump paths from p by the location of
their first step. Either the path goes directly from p to the origin, or p first goes to some other
lattice point a. Note a must have at least one coordinate, say ai, such that ai < pi, hence
a ∈ {[0, p1]× [0, p2]× · · · × [0, pd]} \ {p}. By definition there are S(a) paths from the point a.
Hence, summing over all possible a and the one additional case (immediately jumping to the
origin, or equivalently not choosing any additional lattice points), we find a formula for S(p):

S(p) = 1 +
∑

a6=p,
a∈[0,p1]×[0,p2]×···

S(a). (1.3)

We are able to perform an asymptotic analysis both on the number of generalized jump
paths and the number of such paths of length k. Our main result is as follows.

Theorem 1.1. Let Xp,q be the random variable denoting the number of generalized jump paths
starting at a point (p, q) ∈ N

2 and ending at the origin. Suppose p := n and q := cn for n ∈ N
+

and c ≥ 1 is fixed. Then Xp,q converges to a Gaussian as n → ∞, with mean
q+p+

√
p2+6pq+q2

4

and variance p+q
8 + (p+q)2

8
√

p2+6pq+q2
.

In Section 2, we introduce some notation for our problem and prove some basic properties of
unrestricted generalized jump paths. In Section 3, we use these properties in conjunction with
various analytical and combinatorial methods to obtain a generating function for the number of
paths to a fixed point as a function of path length. Using that result, we prove the Gaussianity
in the limit of the number of summands in decompositions (Theorem 1.1). We use a method
similar to that found in [CCGJMSY]; the difficulty in the argument is in determining a good
count of the number of paths and, from that, a good estimate for the number of paths of a
given length. We conclude with a brief discussion of future questions to study.

2. Properties of Generalized Jump Paths

We define a generalized jump path of length n that starts at (p1, p2, . . . , pd) to be a
sequence of points {(xi,1, xi,2, . . . , xi,d)}ni=0 such that:

• (x0,1, x0,2, . . . , x0,d) = (p1, p2, . . . , pd),
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• for all i and j we have xi,j ≥ xi+1,j,
• for all i we have (xi,1, xi,2, . . . , xi,d) 6= (xi+1,1, xi+1,2, . . . , xi+1,d)

2, and
• (xn,1, xn,2, . . . , xn,d) = (0, 0, . . . , 0).

Let g((p1, p2, . . . , pd), n) be the number of such paths of length n starting at (p1, p2, . . . , pd).
We define an unrestricted generalized jump path to be a sequence of points {(xi,1, xi,2, . . . , xi,d)}ni=0
such that:

• (x0,1, x0,2, . . . , x0,d) = (p1, p2, . . . , pd),
• for all i and j we have xi,j ≥ xi+1,j, and
• for all i we have (xi,1, xi,2, . . . , xi,d) 6= (xi+1,1, xi+1,2, . . . , xi+1,d).

Moreover, let u((p1, p2, . . . , pd), n) be the number of unrestricted generalized jump paths start-
ing from the point (p1, p2, . . . , pd); this is analogous to the definition of g. Note that unrestricted
generalized jump paths are simply generalized jump paths with the last restriction lifted (i.e.,
the sequence does not need to end at the bottom left corner).

We now establish and prove two basic properties for g and u, the first of which was alluded
to when we defined u.

Lemma 2.1 (Unrestricted-Restricted Relationship). Let v := (p1, p2, . . . , pd). For all n ∈ N,

u(v, n) = g(v, n) + g(v, n + 1). (2.1)

Proof. The set of unrestricted jump paths of length n that do not end at (0, 0, . . . , 0) is bijective
to the set of restricted jump paths of length n+ 1 that end at (0, 0, . . . , 0). This immediately
implies the result. �

Theorem 2.2 (2-Dimensional Path Recurrence). For all p, q, n ∈ N
+,

u((p, q), n) = u((p, q − 1), n) + u((p, q − 1), n − 1)

+ u((p − 1, q), n) + u((p − 1, q), n − 1)

− u((p − 1, q − 1), n) − u((p− 1, q − 1), n − 1). (2.2)

Proof. Let functions ℓ((p, q), n), d((p, q), n), and m((p, q), n) denote the number of unrestricted
jump paths starting from the point (p, q) whose first jump is directly left, directly down, and
both left and down, respectively, in n jumps. Then,

ℓ((p, q), n) = ℓ((p− 1, q), n) + u((p− 1, q), n − 1)

d((p, q), n) = d((p, q − 1), n) + u((p, q − 1), n − 1)

m((p, q), n) = d((p − 1, q), n) +m((p − 1, q), n)

= ℓ((p, q − 1), n) +m((p, q − 1), n)

= u((p − 1, q − 1), n − 1) + u((p − 1, q − 1), n). (2.3)

Notice by the definitions of the functions ℓ((p, q), n), d((p, q), n), and m((p, q), n) that

u((p, q), n) = ℓ((p, q), n) + d((p, q), n) +m((p, q), n). (2.4)

2A natural future question would be to remove this condition, which would allow the same point to be used
multiple times in a decomposition. See Section 5 for more information.
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Using identity (2.4) gives

u((p, q), n) = ℓ((p− 1, q), n) + u((p− 1, q), n − 1)

+ d((p, q − 1), n) + u((p, q − 1), n − 1)

+ d((p − 1, q), n) +m((p − 1, q), n)

+ ℓ((p, q − 1), n) +m((p, q − 1), n)

− (u((p − 1, q − 1), n − 1) + u((p− 1, q − 1), n))

= ℓ((p− 1, q), n) + d((p − 1, q), n) +m((p − 1, q), n)

+ d((p, q − 1), n) + ℓ((p, q − 1), n) +m((p, q − 1), n)

+ u((p − 1, q), n − 1) + u((p, q − 1), n − 1)

− (u((p − 1, q − 1), n − 1) + u((p− 1, q − 1), n))

= u((p − 1, q), n) + u((p, q − 1), n)

+ u((p − 1, q), n − 1) + u((p, q − 1), n − 1)

− u((p − 1, q − 1), n − 1)− u((p − 1, q − 1), n), (2.5)

as desired. �

3. 2-Dimensional Generating Function

For every lattice point in N
2 there is a 2-dimensional generating function for the lengths of

the paths from that point. Explicitly, we denote Fp,q(x) to be

Fp,q(x) =

p+q
∑

k=0

u((p, q), k)xk . (3.1)

Our main result in this section is an alternative form for Fp,q that is more readily studied
using asymptotic techniques.

Theorem 3.1. If p ≤ q, then

Fp,q(x) = (1 + x)p
q
∑

k=0

(

q

k

)(

p+ k

k

)

xk. (3.2)

We give two proofs. The first is a pure generating function approach that only proves the
claim for the case p = q = n, whereas the second is purely combinatorial and proves the
theorem in generality. For technical convenience, one often analyzes all paths starting at a
point on the main diagonal; thus if we restrict our investigation to this case, the simpler first
proof suffices.

3.1. Pure Generating Functions Method. Consider the generating function

B(x, y, z) =
∑

p,q,k∈Z+

u((p, q), k)xpyqzk. (3.3)

Using Theorem 2.2, we immediately see that

B(x, y, z) = 1 + (1 + z)(x+ y − xy)B(x, y, z), (3.4)

which implies that

B(x, y, z) =
1

1− (1 + z)(x+ y − xy)
. (3.5)
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Now we use a method adapted from [Stan] to determine the central terms. Define

D(x, s, u) := B(s, x/s, z), (3.6)

and let u := 1 + z; thus

D(x, s, u) =
1

1− u(s+ x/s− x)
=

−s/u

s2 − s(x+ 1/u) + x
. (3.7)

Our generating function for the central terms will be the s0 coefficient of D(x, s, u).
We denote the two solutions for s in the denominator of D(x, s, u) as α and β, where for

ease of reading we suppress the arguments of these functions as follows:

α :=
ux+ 1−

√
u2x2 − 4u2x+ 2ux+ 1

2u
, β :=

ux+ 1 +
√
u2x2 − 4u2x+ 2ux+ 1

2u
. (3.8)

Using the method of partial fractions on (3.7), we find that

D(x, s, u) =
1

u(β − α)

(

α

s− a
− β

s− β

)

. (3.9)

We expand each term by using the geometric series formula, which is applicable for sufficiently
small values of the parameters, and get

D(x, s, u) =
1

u(β − α)





∑

n≥1

αns−n +
∑

n≥0

β−nsn



 . (3.10)

The s0 term is clearly just 1
u(β−α) as β−0s0 = 1. Since β − α =

√
u2x2−2u2x+2ux+1

u , we have

B(x, x, z) =
1√

u2x2 − 4u2x+ 2ux+ 1
=

1
√

(ux+ 1)2 − 4u2x
, (3.11)

where we used that u = z + 1.
We now represent 1/

√

(ux+ 1)2 − 4u2x as a power series of the form
∑

i=0 bi(z)x
i. Differ-

entiating, we obtain the recurrence relation

bi =















1 i = 0

1 + 3z + 2z2 i = 1

(2i− 1)(1 + 2z)(1 + z)bi−1 − (1 + z)2(i− 1)bi−2

i
i ≥ 2.

(3.12)

We define ai such that ai(1 + z)i = bi; then, this sequence satisfies the recurrence

ai =















1 i = 0

1 + 2z i = 1
(2i− 1)(1 + 2z)ai−1 − (i− 1)ai−2

i
i ≥ 2.

(3.13)

The solution to this recurrence relation is ai = Pi(2z + 1), where Pi is the ith Legendre
Polynomial

Pl(x) =

ℓ
∑

k=0

(

ℓ

k

)(−ℓ− 1

k

)(

1− x

2

)k

; (3.14)
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see [Ko]. It follows that

an = Pn(2z + 1) =
n
∑

k=0

(

n

k

)(

n+ k

k

)

zk. (3.15)

Thus, changing variable names,

Fn,n(x) = bn(x) = (1 + x)nan(x) = (1 + x)n
n
∑

k=0

(

n

k

)(

n+ k

k

)

xk, (3.16)

which proves Theorem 3.1 in the p = q = n case, as desired.

3.2. Combinatorial Method. We attempt to obtain a nicer formula for g(p, n) by first re-
laxing our constraint to allow for paths with stationary points (where consecutive points are
allowed to be exactly the same) and then later correcting for the over-counting. We do this as
it is significantly easier to count the total number of paths with this relaxation in place.

Let r(p, n) denote the number of paths from p to the origin with this relaxed constraint.
Arguing as in the Stars and Bars problem3, it follows that

r(p, n) =
d
∏

i=1

(

pi + n− 1

pi

)

. (3.17)

Let s(p, n, k) be the number of paths to p with at least k stationary points. Then

s(p, n, k) =

(

n

k

)

r(p, n− k). (3.18)

By the principle of Inclusion-Exclusion, we have that the number of paths with no stationary
points is

g(p, n) =

n−1
∑

k=0

(−1)k
(

n

k

)

r(p, n− k). (3.19)

Now, the following identity and its proof serve as motivation for how to proceed in evaluating
(3.19).

Lemma 3.2. For m,n ∈ N,
n
∑

i=0

(

n

i

)(

m+ n− i

k − i

)

(−1)i =

(

m

k

)

. (3.20)

Recall that [n] means {1, 2, . . . , n}. The justification is as follows.

Proof. We view the inner term as counting the number of ordered pairs (S, T ) such that S ⊆ [n],
T ⊆ [m+n] \S, and |S|+|T |= k. Let the set of all such valid ordered pairs be V . We consider
the sign-reversing involution f : V \E 7→ V \ E (where E is the set of “exceptions,” for which
f is ill-defined) defined by toggling the smallest term in S ∪T between S and T . For example,
when k = 5,

f({2, 3, 5}, {7, 8}) = ({3, 5}, {2, 7, 8}). (3.21)

3The number of ways to divide N identical items into G groups, where all that matters is how many items
are placed in a group, is

(

N+G−1
G

)

. To see this, consider N + G − 1 items in a line; choosing G − 1 of these
partitions the remaining N items into G sets. The first set is all the elements up to the first chosen one, and so
on. There is thus a one-to-one correspondence between the two counting problems. This method was first used
for Zeckendorf decomposition problems in [KKMW], and has been successfully used in many works since then.
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Given this definition, it’s not difficult to see that f is its own inverse (hence, an involution)
and always "flips" the parity of |S|, sending ordered pairs with a positive coefficient in our
sum to pairs with negative coefficients (and vice versa). Therefore, for all the ordered pairs on
which f is well-defined, our desired sum is 0. Thus, we have

n
∑

i=0

(

n

i

)(

m+ n− i

k − i

)

(−1)i = |E|, (3.22)

and it’s not difficult to see that the only pairs (S, T ) ∈ E are those where S = ∅ and T ⊆
[m+n]\[n]. There are clearly

(

m
k

)

such choices for these sets, and the desired result follows. �

Viewed properly, our formula in (3.19) looks similar to the above lemma; we re-write it as

g(p, n) =
n
∑

i=0

(−1)i
(

n

i

) d
∏

k=1

(

(pk − 1) + n− i

(n− 1)− i

)

. (3.23)

Furthermore, when d = 1, this formula agrees with (3.2), as expected. Although similar
methods may be applied in higher dimensions, we now consider the special case d = 2.

Theorem 3.3. For p, q ∈ N,

g((p, q), n) =

n−1
∑

i=0

(

p− 1

i

)(

p− 1 + n− i

p

)(

q

n− i− 1

)

. (3.24)

Proof. We first assume without loss of generality that p ≤ q. We have that

g(p, n) =

n
∑

i=0

(−1)i
(

n

i

)(

(p − 1) + n− i

(n− 1)− i

)(

(q − 1) + n− i

(n− 1)− i

)

. (3.25)

We now proceed in a similar manner to the proof of Lemma 3.2. We view the inner term
as counting the number of ordered pairs (S, T, U) such that S ⊆ [n], T ⊆ [p + n − 1] \ S,
U ⊆ [q + n− 1] \ S, and |S|+|T |= |S|+|U |= n− 1 . Let the set of all such valid ordered pairs
be V . We consider the sign-reversing involution f : V \ E 7→ V \ E (where E is the set of
“exceptions” for which f is ill-defined) defined by toggling the smallest term in S ∪ (T ∩ U)
between all three sets. Given this definition, it’s not difficult to see that f is its own inverse
(hence, an involution) and always “flips” the parity of |S|, sending ordered pairs with a positive
coefficient in our sum to pairs with negative coefficients (and vice versa). Hence, for all the
ordered pairs on which f is well-defined, our desired sum is 0. Thus, we have

n
∑

i=0

(−1)i
(

n

i

)(

(p − 1) + n− i

(n− 1)− i

)(

(q − 1) + n− i

(n− 1)− i

)

= |E|, (3.26)

and our problem reduces to counting |E|. For f to be ill-defined, it is necessary and sufficient
for S = ∅ and T ∩ U ∩ [n] = ∅.

In order to prove this, we begin by indexing every tuple (S, T, U) by fixing i := |T ∩ U |.
With i fixed, we then choose the i terms that are common to both T and U , which must be
a subset of [p + n − 1] \ [n]. Consequently, there are exactly

(

p−1
i

)

ways to do this. We may

now freely choose the remaining n− i− 1 members of T (of which there are
(p+n−i−1

n−i−1

)

ways to

do so) and the remaining n − i − 1 members of U (for which there are
( q
n−1

)

ways to select).

Multiplying these three terms (and simplifying the second term), we find exactly the desired
term, concluding the proof. �

8 VOLUME, NUMBER



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICES

Proof (Theorem 3.1). We now use (2.1) to obtain

u((p, q), n) =

n
∑

i=0

(

p

i

)(

p+ n− i

p

)(

q

n− i

)

. (3.27)

By the definition of Fp,q given in (3.1) we know that

Fp,q(x) =

p+q
∑

k=0

k
∑

i=0

(

p

i

)(

p+ k − i

p

)(

q

k − i

)

xk

=

(

p
∑

i=0

(

p

i

)

xi

)(

q
∑

k=0

(

q

k

)(

p+ k

p

)

)

= (1 + x)p
q
∑

k=0

(

q

k

)(

p+ k

k

)

xk, (3.28)

which proves Theorem 3.1. �

4. Proving 2-Dimensional Gaussianity

We begin this section with a little bit of notation. Let Xp,q to be a random variable counting
the length generalized jump path starting from the point (p, q) chosen uniformly at random
from all such paths. From Theorem 3.1, we have

Xp,q = Ap,q +Bp,q, (4.1)

where A and B are independent random variables proportional to a binomial coefficient and a
product of binomial coefficients; explicitly

P (A = k) ∝
(

p

k

)

, P (B = k) ∝
(

q

k

)(

p+ k

k

)

. (4.2)

Note A is just the well-studied binomial random variable, which converges to a Gaussian with
mean p/2 and variance p/4 as p → ∞.

We now prove Theorem 1.1. We start by restating it with the notation above: Suppose
p := n and q := cn for n ∈ N

+ and c ≥ 1 is fixed. Then Xp,q converges to a Gaussian as

n → ∞, with mean
q+p+

√
p2+6pq+q2

4 and variance p+q
8 + (p+q)2

8
√

p2+6pq+q2
.

Due to our definition of Xp,q in (4.1), it suffices to show B also converges to a Gaussian,

with mean
q−p+

√
p2+6pq+q2

4 and variance q−p
8 + (p+q)2

8
√

p2+6pq+q2
for the aforementioned choices of

p and q. The proof will use similar techniques to those found in [CCGJMSY]; the algebra is
more involved due to the more complicated structure of the formulas for the number of paths.

To begin, let p := n and q := cn, where c ≥ 1 is fixed. Then P (B = k) is proportional to a
ratio of factorials:

P (B = k) ∝ q!

p!

(p+ k)!

k! k! (q − k)!
=

q!

p!

(n+ k)!

k! k! (cn − k)!
. (4.3)

Applying Stirling’s formula to approximate the factorials in (4.3), we find for p, q large that

P (B = k) ∝ q!

p!

(n+ k)n+k+ 1
2

2πk2k+1(cn − k)cn−k+ 1
2

. (4.4)
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We now define

M :=
(n+ k)n+k+ 1

2

k2k+1(cn− k)cn−k+ 1
2

(4.5)

(i.e., we remove the terms in (4.4) that are constant with respect to k). Taking the logarithm
of both sides of (4.5), we find

logM =
(

n+ k +
1

2

)

log(n+ k)−
(

2k + 1
)

log(k)−
(

cn− k +
1

2

)

log(cn − k). (4.6)

Now we write k as an + t
√
n, where a := c−1+

√
c2+6c+1
4 . This allows us to introduce a more

natural variable for the number of steps in a path, where this number is written in terms of its
distance (in natural units) from the mean. We Taylor expand, using

log(u+ x) = log(u) + log
(

1 +
x

u

)

= log(u) +
x

u
− 1

2

(x

u

)2
+O

(

x3

u3

)

. (4.7)

We do this because later in Lemma 4.1 we show that k = an is the center of the distribution,
and almost all (i.e., with probability 1 in the limit) the mass of the distribution is located
where t is small. We find

logM =
(

n+ k +
1

2

)

log
(

n
(

1 + a+
t√
n

))

−
(

2k + 1
)

log
(

n
(

a+
t√
n

))

−
(

cn− k +
1

2

)

log
(

n
(

c− a− t√
n

))

= (n− cn− 1) log(n)

+
(

n+ k +
1

2

)

log
(

1 + a+
t√
n

)

−
(

2k + 1
)

log
(

a+
t√
n

)

−
(

cn− k +
1

2

)

log
(

c− a− t√
n

)

= (n− cn− 1) log(n)

+
(

n+ k +
1

2

)(

log(1 + a) +
t

(1 + a)
√
n
− t2

2(1 + a)2n
+O

( t3

n3/2

))

−
(

2k + 1
)(

log(a) +
t

a
√
n
− t2

2a2n
+O

(

t3

n3/2

)

)

−
(

cn− k +
1

2

)(

log(c− a)− t

(c− a)
√
n
− t2

2(c− a)2n
+O

(

t3

n3/2

))

. (4.8)

After standard but tedious computations, the details of which are in Appendix A, we obtain

logM = −χt2 + f(n) +O

(

t3√
n

)

, (4.9)
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GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICES

where

χ =
2c2 + 10c3 − 10c4 − 2c5 + 2c2

√

1 + c(6 + c) + 4c3
√

1 + c(6 + c) + 2c4
√

1 + c(6 + c)

8c4

(4.10)

and f(n) is independent of k and t.
We now prove the following lemma, which demonstrates that the tails of this distribution

decay sufficiently quickly.

Lemma 4.1. As n → ∞, P (|t|> n0.1) → 0.

Proof. First, we show P (t > n0.1) goes to 0; the proof for P (t < −n0.1) follows similarly.
Note that if we increase k by 1, then the number of paths of length k increases by a factor

of around (p+k)(q−k)
k2

(note that this is strictly decreasing in k). Plugging in k = an+ t
√
n, we

see that the proportion at which the number of paths increases is

1−
(

8
√
c2 + 6c+ 1

(1 + c)2 + (c− 1)
√
c2 + 6c+ 1

t√
n

)

+O

(

t2

n

)

. (4.11)

Let the coefficient of the t/
√
n term be c′. Plugging in t = 1, and ignoring the higher order

terms means that for k ≥ an +
√
n, the ratio will be at most r = 1 − c′

√
n. Let B0 be the

number of paths of length k when t = 1. The number of paths with t > n0.1 is bounded above

by a geometric series of first term B0 · rn
0.6−n0.5 and ratio r, and we have

rn
0.5

=

(

1− c′√
n

)

√
n

≈ e−c′ < 1. (4.12)

Thus as n goes to infinity, B0 · rn0.6−n0.5 = B0 ·
(

e−c′
)n0.1−1

, where the last exponent, n0.1− 1,

goes to infinity. Now note that the total number of paths of any length is strictly greater than
B0, so the probability that t > n0.1 is at most

B0 ·
(

e−c′
)n0.1−1

/(1− r)

B0
=

√
n

c′

(

e−c′
)n0.1−1

, (4.13)

which goes to 0 as n grows. Thus, the probability that t > n0.1 goes to 0 as n gets large, as
desired. �

Consequently, we know that t3/
√
n → 0 as n → ∞, so by sending p and q to ∞,

P (B = k) = Ce−χt2 = Ce
− (an−k)2

n/χ , (4.14)

where C is some constant in terms of p and q. This is the equation for a Gaussian Distribution
with mean

an =
q − p+

√

p2 + 6pq + q2

4
(4.15)

and variance

n

2χ
= n

(

c− 1

8
+

c2 + 2c+ 1

8
√
1 + 6c+ c2

)

=
q − p

8
+

q2 + 2pq + p2

8
√

p2 + 6pq + q2
. (4.16)
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We conclude that Xp,q is Gaussian with mean

E[Xp,q] = E[Ap,q] + E[Bp,q] =
p

2
+

q − p+
√

p2 + 6pq + q2

4
=

p+ q

4
+

√

p2 + 6pq + q2

4
,

(4.17)

and variance

Var (Xp,q) = Var (Ap,q) + Var (Bp,q)

=
p

4
+

q − p

8
+

q2 + 2pq + p2

8
√

p2 + 6pq + q2
=

p+ q

8
+

(p + q)2

8
√

p2 + 6pq + q2
. (4.18)

This completes the proof of Theorem 1.1. ✷

5. Further Work and Open Questions

We conclude with some suggestions of future research.

(1) Is it possible to generalize the generating function approach for points not on the
diagonal? Although empirical results suggest similar behavior, the associated Taylor
expansion becomes significantly harder to work with.

(2) How do our results generalize to higher dimensions? Our combinatorial approach ad-
mits a natural extension to higher dimensions, although the casework becomes sig-
nificantly more cumbersome. Furthermore, it is of note that the generating function
approach does not generalize to three or more dimensions.

(3) How quickly does our distribution converge to a Gaussian?
(4) What is the behavior if we allow a point to be used more than once? Of course, if

we can use a point arbitrarily many times it is unclear how to define the terms of our
sequence; thus the natural question would be what happens if each point can be used
at most T times, for some fixed T .

(5) There are even more combinatorial questions worth exploring. Many different addi-
tional restrictions can be put on the compound jump paths. One such restriction is
prohibiting any path from visiting any points that lie above the line y = x.

Appendix A. Gaussianity Calculations

We give the simplification of logM from (4.5). We have that

logM = − t

a
√
n
+

t

2(1 + a)
√
n
+

t

2(−a+ c)
√
n
− 2kt

a
√
n
+

kt

(1 + a)
√
n

− kt

(−a+ c)
√
n
+

√
nt

1 + a
+

c
√
nt

−a+ c
− t2

2(1 + a)2
+

ct2

2(−a+ c)2

+
t2

2a2n
− t2

4(1 + a)2n
+

t2

4(−a+ c)2n
+

kt2

a2n
− kt2

2(1 + a)2n

− kt2

2(−a+ c)2n
− log(a)− 2k log(a) +

1

2
log(1 + a) + k log(1 + a)

+ n log(1 + a)− 1

2
log(−a+ c) + k log(−a+ c)− cn log(−a+ c). (A.1)
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Substituting a = c−1+
√
c2+6c+1
4 , we find that this expression for logM is equal to

− 4t
(

−1 + c+
√
1 + 6c+ c2

)√
n
+

t

2
(

c+ 1
4

(

1− c−
√
1 + 6c+ c2

))√
n

+
t

2
(

1 + 1
4

(

−1 + c+
√
1 + 6c+ c2

))√
n
+

c
√
nt

c+ 1
4

(

1− c−
√
1 + 6c+ c2

)

+

√
nt

1 + 1
4

(

−1 + c+
√
1 + 6c+ c2

) +
ct2

2
(

c+ 1
4

(

1− c−
√
1 + 6c+ c2

))2

− t2

2
(

1 + 1
4

(

−1 + c+
√
1 + 6c+ c2

))2 +
8t2

(

−1 + c+
√
1 + 6c+ c2

)2
n

+
t2

4
(

c+ 1
4

(

1− c−
√
1 + 6c+ c2

))2
n
− t2

4
(

1 + 1
4

(

−1 + c+
√
1 + 6c+ c2

))2
n

−
8t
(

1
4

(

−1 + c+
√
1 + 6c+ c2

)

n+
√
nt
)

(

−1 + c+
√
1 + 6c+ c2

)√
n

−
t
(

1
4

(

−1 + c+
√
1 + 6c+ c2

)

n+
√
nt
)

(

c+ 1
4

(

1− c−
√
1 + 6c+ c2

))√
n

+
t
(

1
4

(

−1 + c+
√
1 + 6c+ c2

)

n+
√
nt
)

(

1 + 1
4

(

−1 + c+
√
1 + 6c+ c2

))√
n

+
16t2

(

1
4

(

−1 + c+
√
1 + 6c+ c2

)

n+
√
nt
)

(

−1 + c+
√
1 + 6c+ c2

)2
n

.

(A.2)

Continuing the simplification, we see the above equals

−
t2
(

1
4

(

−1 + c+
√
1 + 6c+ c2

)

n+
√
nt
)

2
(

c+ 1
4

(

1− c−
√
1 + 6c+ c2

))2
n

−
t2
(

1
4

(

−1 + c+
√
1 + 6c+ c2

)

n+
√
nt
)

2
(

1 + 1
4

(

−1 + c+
√
1 + 6c+ c2

))2
n

− log

(

1

4

(

−1 + c+
√

1 + 6c+ c2
)

)

− 2

(

1

4

(

−1 + c+
√

1 + 6c+ c2
)

n+
√
nt

)

log

(

1

4

(

−1 + c+
√

1 + 6c+ c2
)

)

− 1

2
log

(

c+
1

4

(

1− c−
√

1 + 6c+ c2
)

)

− cn log

(

c+
1

4

(

1− c−
√

1 + 6c+ c2
)

)

+

(

1

4

(

−1 + c+
√

1 + 6c+ c2
)

n+
√
nt

)

log

(

c+
1

4

(

1− c−
√

1 + 6c+ c2
)

)

+
1

2
log

(

1 +
1

4

(

−1 + c+
√

1 + 6c+ c2
)

)

+ n log

(

1 +
1

4

(

−1 + c+
√

1 + 6c+ c2
)

)

+

(

1

4

(

−1 + c+
√

1 + 6c+ c2
)

n+
√
nt

)

log

(

1 +
1

4

(

−1 + c+
√

1 + 6c+ c2
)

)

. (A.3)
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Simplifying and collecting like terms, we have logM equals

1

8c4n

(

t2 + 6ct2 + 7c2t2 + 4c3t2 − 3c4t2 − 6c5t2 − c6t2 +
√

1 + c(6 + c)t2

+ 3c
√

1 + c(6 + c)t2 + 2c2
√

1 + c(6 + c)t2

−2c3
√

1 + c(6 + c)t2 + 3c4
√

1 + c(6 + c)t2 + c5
√

1 + c(6 + c)t2
)

+
1

8c4
√
n

(

2c2t+ 2c3t+ 10c4t+ 2c5t+ 2c2
√

1 + c(6 + c)t− 4c3
√

1 + c(6 + c)t

− 2c4
√

1 + c(6 + c)t− 2t3 − 12ct3 − 6c2t3 + 8c3t3 − 6c4t3 − 12c5t3

− 2c6t3 − 2
√

1 + c(6 + c)t3 − 6c
√

1 + c(6 + c)t3 + 4c2
√

1 + c(6 + c)t3

−4c3
√

1 + c(6 + c)t3 + 6c4
√

1 + c(6 + c)t3 + 2c5
√

1 + c(6 + c)t3
)

+
1

8c4

(

−2c2t2 − 10c3t2 + 10c4t2 + 2c5t2 − 2c2
√

1 + c(6 + c)t2 − 4c3
√

1 + c(6 + c)t2

− 2c4
√

1 + c(6 + c)t2 + 8c4 log(8) − 4c4 log
(

4 + 12c − 4
√

1 + c(6 + c)
)

−8c4 log
(

−1 + c+
√

1 + c(6 + c)
)

+ 4c4 log
(

3 + c+
√

1 + c(6 + c)
))

+

√
n

8c4

(

8c4t log
(

1 + 3c−
√

1 + c(6 + c)
)

− 16c4t log
(

−1 + c+
√

1 + c(6 + c)
)

+8c4t log
(

3 + c+
√

1 + c(6 + c)
))

. (A.4)

Finally, we obtain that logM is

+
n

8c4

(

−8c4 log(4) + 8c5 log(4) − 2c4
√

1 + c(6 + c) log(4)− 2c4 log
(

1 + 3c−
√

1 + c(6 + c)
)

− 6c5 log
(

1 + 3c−
√

1 + c(6 + c)
)

+ 2c4
√

1 + c(6 + c) log
(

1 + 3c−
√

1 + c(6 + c)
)

+ 4c4 log
(

−1 + c+
√

1 + c(6 + c)
)

− 4c5 log
(

−1 + c+
√

1 + c(6 + c)
)

− 4c4
√

1 + c(6 + c) log
(

−1 + c+
√

1 + c(6 + c)
)

+ 6c4 log
(

3 + c+
√

1 + c(6 + c)
)

+2c5 log
(

3 + c+
√

1 + c(6 + c)
)

+ 2c4
√

1 + c(6 + c) log
(

4
(

3 + c+
√

1 + c(6 + c)
)))

.

(A.5)

We now verify that the t
√
n term has coefficient 0. Our desired coefficient is

8c4t log
(

1 + 3c−
√

1 + c(6 + c)
)

− 16c4t log
(

−1 + c+
√

1 + c(6 + c)
)

+ 8c4t log
(

3 + c+
√

1 + c(6 + c)
)

. (A.6)

Exponentiating this expression, we obtain
(

1 + 3c−
√

1 + c(6 + c)
)(

3 + c+
√

1 + c(6 + c)
)

(

−1 + c+
√

1 + c(6 + c)
)2 = 1 (A.7)

as desired, completing the computations.
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Consequently, as claimed, we have that logM is of the form

logM = −χt2 + f(n) +O

(

t3√
n

)

, (A.8)

where χ is defined as

χ =
2c2 + 10c3 − 10c4 − 2c5 + (2c2 + 4c3 + 2c4)

√

1 + c(6 + c)

8c4
, (A.9)

and f(n) is independent of k or t.
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