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Abstract. In 1966, V. Arnold established an important connection between the incompressible Euler equa-
tions and a particular set of geodesic flows, using variational techniques to characterize the latter as solutions
to the former. Motivated by his results, we investigate a series of similar PDEs characterizing constrained
critical points of action functionals, paying particular interest to those associated with surfactant dynam-
ics. Starting with the Arnold functional, we introduce various complications, adding terms associated to
potential energies, surface tension, and surfactant momentum to derive different PDEs.

1. Introduction/Background

One of the goals of this paper is to study a model of surfactants using the Euler system. Surfactants
(surface-active agents, e.g. detergents, emulsifiers, and soap bubbles) adhere to the surface of fluids and
have the ability to change magnitude of surface tension. Their behavior is of importance in the cosmetic
industry, ore extraction and other areas (see for instance, [HLT08]). They also play a key role in biology,
preventing the collapse of lungs during normal breathing (see [Hil99]). For a more in-depth explanation of
surfactant physics and their key properties, see [EBW91] and the review [Sar96].

Now we’ll discuss the setup. Let Ω be a bounded, open, connected subset of Rn with Σ :“ BΩ smooth
and set ν : Σ Ñ Rn to be the associated outward pointing unit normal. See Figure 1 for a diagram of the
unit normal. The incompressible Euler equations, first discovered by Euler in 1757, are an important set
of PDEs characterizing the evolution of inviscid fluids. Assuming that such a fluid has constant, uniform
density, and is trapped in a fixed container set Ω, the equations read

$

’

&

’

%

Btu` u ¨∇u`∇p “ 0 on Ω

div u “ 0 on Ω

u ¨ ν “ 0 on Σ

(1.1)

where u : Ω ˆ r0, 1s Ñ Rn is the Eulerian velocity of the fluid and p : Ω ˆ r0, 1s Ñ Rn is the pressure
exerted on the fluid.
(We consider only t P r0, 1s for simplicity, since more general time domains can be obtained by rescaling.)

Let η be the flow map associated to u via
#

ηpx, 0q “ x

Btηpx, tq “ upηpx, tq, tq
(1.2)

We note that the divergence free condition on u in Equation (1.1) is equivalent to η being volume preserving
(see Theorem 2.3) and also that the last equation guarantees that the fluid does not “escape the boundary,”
so that the image of η is always equal to Ω.
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If in addition the fluid is moving freely (the boundary is not constant) and has a constant surface tension
σ ě 0 (where surface tension is the force of the surface adhering the bulk of the fluid), the equations
become

$

’

&

’

%

Btu` u ¨∇u`∇p “ 0 on Ωptq

div u “ 0 on Ωptq

p “ ´σH on Σptq

(1.3)

where Ωptq and Σptq respectively describe the fluid and its boundary at time t (see Figure 2) and H “

´div ν is the mean curvature operator on Σptq (average of curvature in all directions).

Figure 1. Outward pointing unit normal on Σ.

Ω

Σ = ∂Ω

•y

Ω (t)

Σ (t) = ∂Ω(t)

• x = η (t, y)

η (t, ·)

Figure 2. Flow map with free boundary

Historically, numerous connections were made between PDEs and energy functionals. One famous example
is the Euler-Lagrange Equation, which we state below. (See Section 8.1.2 of [Eva10] for a derivation.)
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Theorem 1.1. (Euler-Lagrange Equation)
Let Ω Ď Rn be bounded and open with a smooth boundary. Suppose E : C8b pΩq Ñ R is given by

Epuq :“

ˆ
Ω
Lpx, upxq,∇upxqqdx (1.4)

where Lpx, z, pq : Ω ˆ R ˆ Rn Ñ R is smooth. Assume further that there exists some u P C8b pΩq that
minimizes this energy, i.e. u “ arg minC8

b pΩq
E. Then u must satisfy

BzLpx, upxq,∇upxqq “ div∇pLpx, upxq,∇upxqq (1.5)

The standard Euler-Lagrange equation is an unconstrained variational optimization problem, where energy
minimizers are allowed to take on arbitrary values. However, especially in the context of fluid dynamics,
the constrained versions of these optimization problems (where inputs to the energy are required to lie on
some constraint manifold) are of more interest.
A particularly notable result in this context is due to Vladimir Arnold, who established the connection
between the incompressible Euler equations and the Arnold energy functional (which will be introduced in
Equation (1.6)) (see [Arn66, AK98]).

In this paper, motivated by these results, the work of Shatah and Zeng in [SZ07], and results like those
surveyed in [KMM20], we make various modifications to the Arnold functional related to surfactants and
study the resulting PDEs.

We begin first by defining the relevant function spaces that we’ll be working in.

Definition 1.2. Given a fixed reference frame Ω as above, we define FDiffpΩq Ď L2pΩ;Rnq to be the space
of volume and orientation preserving smooth diffeomorphisms on Ω; that is,

FDiffpΩq :“ tη : Ω Ñ Rn | η is a smooth volume/orientation preserving diffeomorphismu

Given any such η P FDiffpΩq, one can naturally view it as encoding a possible evolution of the set Ω, where
η provides Lagrangian coordinates.
In presenting Arnold’s original work, we’ll also need to work with a slightly smaller subset of FDiffpΩq
where the boundary is fixed. Although we won’t be working extensively in this space, we present its
definition here for completeness.

Definition 1.3. We define Diff0pΩq to be the space of smooth diffeomorphisms of Ω onto itself; that is,

Diff0pΩq :“ tη : Ω Ñ Ω | η P FDiffpΩqu

As remarked above, this space corresponds to the fixed boundary case, whereas the previous definition allows
for free boundary.

Now in the remainder of this section, we state Arnold’s previous results on geodesic flows in Diff0pΩq and
our main results about action minimizing flows on FDiffpΩq.

Remark. Throughout the rest of this paper, we’ll largely be taking for granted existence and smoothness
of the different functions that we’ll be working with, implicitly assuming everything is C8 unless otherwise
stated. While explicitly tracking the minimal degrees of regularity needed can be done (and is even present
in many of the technical tools we present), these assumptions greatly facilitate the calculations being done
without needing to appeal to e.g. the theory of distributions. In a similar vein, in our main results, we’ll
be assuming a priori that critical points of the action functionals under consideration exist, and will not
discuss the necessary assumptions for their existence nor regularity.

Theorem 1.4. (Arnold, 1966)

Fix η0, η1 P Diff0pΩq, and let rX be the space of flows with initial configuration η0 and terminal configuration
η1; that is,

rX :“ tη P C1pr0, 1s; Diff0pΩqq | ηp0q “ η0, ηp1q “ η1u.
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Then minimizers (if they exist) of the energy functional E : rX Ñ R` defined via

Epηq “

ˆ 1

0

ˆ
Ω

1

2
|Btη|

2 dxdt (1.6)

must satisfy the incompressible Euler equations with fixed boundary and uniform constant density
$

’

&

’

%

Btu` u ¨∇u`∇p “ 0 on Ω

div u “ 0 on Ω

u ¨ ν “ 0 on Σ

(1.7)

where Σ “ BΩ, u : Ω ˆ r0, 1s Ñ Rn is the Eulerian velocity defined via upηpx, tq, tq “ Btηpx, tq and
p : r0, 1s Ñ C8pΩq is the pressure term.

Remark. We call such minimizers geodesic flows, as their associated optimality condition is analogous
to the optimality condition for geodesics on manifolds in Euclidean space, which minimize

Egpηq “

ˆ 1

0

1

2
|Btηg|

2 dt

where ηg : r0, 1s Ñ M is a path along some manifold M . The g subscript indicates that for this remark,
we are talking about geodesics instead of flow maps.
Here, the only modification being made is to the Riemannian metric:

}Btη}
2 :“

ˆ
Ω
|Btη|

2 dx. (1.8)

Note that the energy functional is precisely integral of this term over time.

Now switching to the free boundary case, we introduce various additional modifications to Arnold’s func-
tional, which in turn lead to new PDEs. For simplicity, we define

Ωptq :“ ηpΩ, tq and Σptq :“ ηpΣ, tq “ ηpBΣ, tq (1.9)

so that the image of Ω at time t is Ωptq with boundary given by Σptq .

The first additional term we introduce is a globally defined potential energy term ϕ, which can compensate
for other forces acting on the fluid such as gravity or an electromagnetic field. We also consider compli-
cations of the fluid itself, where we allow now for the fluid to have variable density. Defining ρ : Ω Ñ R`
to be the Lagrangian density of the fluid, we can then also set ρ : Ωptq ˆ r0, 1s Ñ R` to be the Eulerian
density of the fluid, noting that these two quantities are related by

ρpηpx, tq, tq “ ρpxq (1.10)

After considering all of these effects, we arrive at an action functional similar to one investigated by Shatah
and Zeng in Section 2.1 of [SZ07], but that notably includes these two extra degrees of complexity.

Remark. Note that since we have introduced and subtracted a potential term, we are now considering
a wider class of action functionals, which generalize the energy functionals/geodesic distances seen in
Arnold’s work. In particular, since this new energy is given by the difference of the kinetic and potential
energies, we’re now considering the Lagrangian of the system.

Theorem 1.5. Fix η0, η1 P FDiffpΩq, and let X be the space of flows with initial configuration η0 and
terminal configuration η1; that is,

X :“ tη P C1pr0, 1s; FDiffpΩqq | ηp0q “ η0, ηp1q “ η1u

Then given any ϕ P C1pRnq and ρ : Ω Ñ R`, critical points (if they exist) of the action E : X Ñ R defined
via

Epηq “

ˆ 1

0

ˆ
Ω

ρ

2
|Btη|

2 ´ ϕpηq dxdt (1.11)
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must satisfy the incompressible Euler equations with free boundary and surface tension:
$

’

&

’

%

ρpBtu` u ¨∇uq `∇p “ ´∇ϕ on Ωptq

div u “ 0 on Ωptq

p “ 0 on Σptq

(1.12)

where u : Ωptq ˆ r0, 1s Ñ R3 is the Eulerian velocity defined via upηpx, tq, tq “ Btηpx, tq and p : r0, 1s Ñ
C8pΩptqq is the pressure.

Focusing on the dynamics of the boundary, we can also introduce a boundary dependent term σ that takes
into account surface tension by integrating the surface tension against the surface. The surface tension
essentially acts as a potential energy just as ϕ does.

Theorem 1.6. Fix η0, η1 P FDiffpΩq, and let

X :“ tη P C1pr0, 1s; FDiffpΩqq | ηp0q “ η0, ηp1q “ η1u

Given a constant σ P R`, ρ : Ω Ñ R` and ϕ P C1pRnq, critical points (if they exist) of the action
E : X Ñ R via

Epηq “

ˆ 1

0

˜ˆ
Ω

ρ

2
|Btη|

2 ´ ϕpηq dx´

ˆ
Σptq

σdS

¸

dt (1.13)

must satisfy the incompressible Euler equations with free boundary and surface tension
$

’

&

’

%

ρpBtu` u ¨∇uq `∇p “ ´∇ϕ on Ωptq

div u “ 0 on Ωptq

p “ ´σH on Σptq

(1.14)

where u : Ωptq ˆ r0, 1s Ñ Rn is the Eulerian velocity defined via upηpx, tq, tq “ Btηpx, tq,
H “ ´div ν is the mean curvature of Σptq, ρpxq “ ρpηpx, tqq is the density, and p : r0, 1s Ñ C8pΩptqq is
the pressure.

Finally, in the next two theorems we modify our action functionals to account for various surfactant
dynamics, adding a second boundary term to penalize “wiggling” of surfactants along the boundary.
As part of our underlying assumptions, we enforce that the overall mass of the surfactants is locally (and
hence globally) conserved. To be precise, let JΣ : Σ ˆ r0, 1s Ñ R be the distortion of the surface area
element, so that for any t P r0, 1s, U Ď Σ and f : ηpU, tq Ñ Rn smooth, thenˆ

U
f ˝ ηpx, tqJΣpx, tq dSpxq “

ˆ
ηpU,tq

fpxq dSpxq. (1.15)

Then setting γ to be the Eulerian density of our surfactants and putting

γpx, tqJΣpx, tq “ γ0pxq, and γpηpx, tq, tq “ γpx, tq, (1.16)

our conservation of mass equation reads

d

dt

ˆ
ηpU,tq

γ dS “ 0. (1.17)

for any U Ď Σ measurable.
Now we first consider a model where the surfactants adhere to and remain stationary relative to the bound-
ary, meaning that their movement is entirely dictated by η.

Theorem 1.7. Fix η0, η1 P FDiffpΩq, let

X “ tη P C1pr0, 1s; FDiffpΩqq | ηp0q “ η0, ηp1q “ η1u

Given ρ : Ω Ñ R`, ξ : RÑ R`, γ0 : Σ Ñ R`, ϕ P C1pRnq, consider the action E : X Ñ R given by

Epηq “

ˆ 1

0

˜ˆ
Ω

ρ

2
|Btη|

2 ´ ϕpηq dx`

ˆ
Σ

γ0

2
|Btη|

2 dS ´

ˆ
Σptq

ξpγq dS

¸

dt (1.18)
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with all relevant terms as defined in equations (1.9, 1.10, and 1.16). Then critical points (if they exist) of
the action functional E must satisfy

$

’

’

’

&

’

’

’

%

ρpBtu` u ¨∇uq `∇p “ ´∇ϕ on Ωptq

div u “ 0 on Ωptq

γpBtu` u ¨∇uq ´ pν “ ∇Σptqσ `Hνσ on Σptq

Btγ `∇γ ¨ u` γdivΣptqu “ 0 on Σptq

(1.19)

where again u : Ωptq ˆ r0, 1s Ñ Rn is the Eulerian velocity defined via upηpx, tq, tq “ Btηpx, tq,
σ “ ξpγq ´ ξ1pγqγ is the surface tension, ρpxq “ ρpηpx, tq, tq, and p : r0, 1s Ñ C8pΩptqq.

Remark. Here ξ is understood as the free energy on the boundary. For a detailed discussion of how and
why surface tension σ and free energy ξ are related, see Equation (1.28) in [TW17]. In the case where the
free energy ξ is constant, it is the same as the surface tension σ, and hence was not considered separately in
our previous results. In the simplest context, surface tension is constant. However, in many cases, surface
tension decreases where there is a high concentration of surfactants and hence a larger surface tension is
not penalized as much as it would otherwise be. ξ takes this into account.

Remark. Note that the third equation of the results can be found in Equation (1.2) of [TW17].

Now, in the following theorem (Theorem 1.8), we will add an additional degree of freedom β that allows
the surfactants to slide freely along the boundary, with the associated motions then being generated by
η ˝ β. In particular, note that the surfactants on the boundary can now move in two ways. Firstly, as
before, when the bulk moves, the surface itself can deform and cause the surfactants to move. Additionally,
with the addition of β, the surfactants can now also move independently of the bulk along the surface.
Our definitions then change slightly, so that we now require JΣ : Σˆ r0, 1s Ñ R to satisfy thatˆ

U
f ˝ ηptq ˝ βptqJΣ dS “

ˆ
ηpβpU,tq,tq

f dS, (1.20)

for any U Ď Σ and f : ηpU, tq Ñ Rn smooth and that

γpx, tqJΣpx, tq “ γ0pxq, γpηpβpx, tq, tq, tq “ γpx, tq. (1.21)

As before, we will still enforce conservation of mass, so that for any U Ď Σ,

d

dt

ˆ
η˝βpU,tq

γ dS “ 0.

Remark. Note that although the results of Theorem 1.7 and Theorem 1.8 appear to be very similar, we
emphasize that in Theorem 1.8, uspηpβpx, tq, tqq :“ Btpηpβpx, tq, tqq is generated by both the motion of η
and by the motion of the surfactants β, whereas u depends solely upon η.

Remark. As motivation for Theorem 1.8, we consider the following scenario. If we imagine that the
initial volume Ω contains a droplet moving near the Earth’s surface which is covered by a surfactant on
its boundary, then β describes the relative motion of the surfactant around the droplet with us being the
velocity of the surfactant around the bulk. For instance, the bulk can be rotating at some constant angular
velocity while surfactant can be rotating at higher angular velocity. β in this case accounts for relative
difference between angular velocity of the bulk and the surfactant. The potential term ϕ would then become
the standard gravitational potential energy ϕ :“ ρgh, where g is the constant of gravitational acceleration
and hpηpx, tq, tq is the distance between the surface of the Earth and the material point in question.

Theorem 1.8. Fix η0, η1 P FDiffpΩq, let

X :“ tη P C1pr0, 1s; FDiffpΩqq | ηp0q “ η0, ηp1q “ η1u

Y :“ tβ P C1pr0, 1s; Diff0pΣqq | βp0, xq “ xu

Given ρ : Ω Ñ R`, ξ : RÑ R`, γ0 : Σ Ñ R`, ϕ P C1pRnq, consider E : X ˆ Y Ñ R via

Epη, βq “

ˆ 1

0

˜ˆ
Ω

ρ

2
|Btη|

2 ´ ϕpηq dx`

ˆ
Σ

γ0

2
|Btpη ˝ βq|

2 dS ´

ˆ
Σptq

ξpγq dS

¸

dt (1.22)
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with all relevant terms as defined above.
Then critical points (if they exist) of the action functional E must satisfy

$

’

’

’

&

’

’

’

%

ρpBtu` u ¨∇uq `∇p “ ´∇ϕ on Ωptq

div u “ 0 on Ωptq

γpBtus ` us ¨∇usq ´ pν “ ∇Σptqσ `Hνσ on Σptq

Btγ `∇γ ¨ u` γdivΣptqu “ 0 on Σptq

(1.23)

where u : Ωptq ˆ r0, 1s Ñ Rn is the Eulerian velocity of the fluid defined via upηpx, tq, tq “ Btηpx, tq,
us : Σptqˆr0, 1s Ñ Rn is the Eulerian velocity of the surfactant defined via uspηpβpx, tq, tq, tq “ Btpηpβpx, tq, tqq,
σ “ ξpγq ´ ξ1pγqγ is the surface tension, ρpxq “ ρpηpx, tq, tq are densities, and p : r0, 1s Ñ C8pΩq is the
pressure.

Examining the equations given by (1.23), we see that the first two govern the motion of the incompressible
fluid, whereas the last two describe the evolution of the surfactants living on the boundary. In particular,
the third equation describes the kinematics of surfactants whereas the fourth enforces preservation of
surfactant mass on the boundary.

2. Technical Prerequisites

We’ll now present some technical results that will be used heavily in the derivations of our final PDEs.
Beginning with some standard results from fluid mechanics, in Sections 2.1 and 2.2, we revisit the relevant
function spaces we’ll be working in, taking care to establish the different structural properties that we’ll be
taking advantage of. Of particular interest from these sections is Lemma 2.5, which allows us to perturb
any given flow map by an arbitrary divergence-free velocity field, an argument that provides us with explicit
constraints on the action critical points being considered.
Supplementing these structural results are then the decompositions of L2 provided by Section 2.3, which
allow us to introduce the pressure by way of complementing particular classes of divergence free velocity
fields in L2.
Finally, we conclude by presenting some useful computation tools from differential geometry in Section 2.4.

2.1. Basic Fluid Mechanics.
We first show how volume preserving flows are related to divergence free velocity fields.

Definition 2.1. Let Ω Ď Rn be open and f : Ω Ñ fpΩq Ď Rn be a C1 diffeomorphism. We say f
is volume preserving if µnpUq “ µnpfpUqq for any measurable U Ď Ω, where µn is the n-dimensional
Lebesgue measure.

Lemma 2.2. Let η : Ωˆ r0, 1s Ñ Rn be a flow map and write Ωptq “ ηpΩ, tq. If up¨, tq : Ωptq Ñ Rn is the
Eulerian velocity associated to η, then

Bt detDηpx, tq “ div upηpx, tq, tqdetDηpx, tq

Proof. This proof is not new (see, for instance, [BF13]) but is being included for convenience. We begin
by recalling Jacobi’s Formula. Given a C1 map A : RÑ Rmˆm, we have that

d

dt
detAptq “ tr

ˆ

adjpAptqq
dAptq

dt

˙

where adjpAptqq is the adjugate of Aptq.

433



SURFACTANT DYNAMICS FROM THE ARNOLD PERSPECTIVE

Our desired result is then an easy calculation using chain rule, the definition of the adjugate, and the
stated equation. By direct computation,

Bt detDηpx, tq “ tr padjpDηpx, tqqBtDηpx, tqq

“ tr padjpDηpx, tqqDupηpx, tq, tqDηpx, tqq

“ tr pDupηpx, tq, tqDηpx, tq adjpDηpx, tqqq

“ tr pDupηpx, tq, tqI detDηpx, tqq

“ trpDupηpx, tq, tqqdetDηpx, tq

“ div upηpx, tq, tqdetDηpx, tq.

�

Theorem 2.3. Let η : Ω ˆ r0, 1s Ñ Rn be a flow map and write Ωptq “ ηpΩ, tq. Then the following are
equivalent:

(1) For all t P r0, 1s the map ηp¨, tq : Ω Ñ Ωptq is volume preserving.
(2) detDηpx, tq “ 1 for all x P Ω, t P r0, 1s.
(3) If up¨, tq : Ωptq Ñ Rn is the Eulerian velocity associated to η, i.e., upηpx, tq, tq “ Btηpx, tq, then

div upx, tq “ 0 for all x P Ωptq and t P r0, 1s.

Proof. We first show the equivalence of the first two items.
If U Ď Ω is measurable, then Uptq “ ηpU, tq is measurable and by change of variables with ηptq we have

µnpUptqq “

ˆ
ηpU,tq

1 dx “

ˆ
U

detDηpx, tq dx.

Hence if µnpUq “ µnpUptqq for all such U measurable, thenˆ
U
rdetDηpx, tq ´ 1s dx “ 0

and so detDηpx, tq “ 1 for all x P Ω, t P r0, 1s. The converse is immediate.
Now suppose the second item. Then by Lemma 2.2,

detDηpx, tq “ 1 ùñ 0 “ Bt detDηpx, tq

“ div upηpx, tq, tqdetDηpx, tq “ div upηpx, tq, tq

for all x P Ω, t P r0, 1s. Since ηp¨, tq : Ω Ñ Ωptq is a diffeomorphism, div upx, tq “ 0 for all t P r0, 1s, x P Ωptq.
Finally, suppose the third item. Then

#

Bt detDηpx, tq “ div upηpx, tq, tqdetDηpx, tq “ 0

detDηpx, 0q “ 1

and thus detDηpx, tq “ 1 for all x P Ω, t P r0, 1s. �

2.2. The Structure of Diff0pΩq and FDiffpΩq.
With these prerequisites out of the way, we’re now ready to introduce our function spaces and their prop-
erties. Thinking of Diff0pΩq and FDiffpΩq as manifolds in L2pΩ;Rnq (which is the result of the following
theorem), we can formally compute the tangent spaces at any function η P FDiffpΩq. Using these charac-
terizations, we can then reason about variational properties of paths along these manifolds.

Theorem 2.4. FDiffpΩq and Diff0pΩq Ď L2pΩ;Rnq are Fréchet manifolds, with their respective tangent
spaces at any point η satisfying

TηDiff0pΩq “ tu ˝ η P C
8pΩ;Rnq | div u “ 0, u ¨ ν “ 0u (2.1)

TηFDiffpΩq “ tu ˝ η P C8pΩ;Rnq | div u “ 0u (2.2)

Proof. For the proof that Diff0pΩq is a manifold, see section VIII.1 of [Omo74] or [Sch87].
For FDiffpΩq, we simply modify the proof slightly and see that every volume element on Ω is the restriction
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of some volume form on Rn to Ω.
We now show Ď in 2.1 for the Diff0pΩq case. First recall that

TηDiff0pΩq “ tγ
1p0q | γ P C8pp´ε, εq; Diff0pΩqq, γp0q “ ηu

and note that any such curve γ as above can be lifted to a C8 volume-preserving flow map Γ : p´ε, εqˆΩ Ñ
Ω via Γpt, xq “ γptqpxq. It’s obvious that BtΓ “ γ1 if the latter exists, so we have

TηDiff0 “ tBtΓp0, ¨q | Γ P C1pRˆ Ω; Ωq,Γp0, ¨q “ η and @t divBtΓpt, ¨q “ 0, BtΓ ¨ ν “ 0u

where the first condition follows from the fact that Γ is volume preserving and last condition follows from
the fact that Γpt, ¨q P Diff0. This clearly shows Ď.
We now show Ě.
Suppose that u P C8pΩ;Rnq satisfies the conditions of Equation (2.1). It suffices to show that there exists
ε ą 0 and Γ P C8pp´ε, εq ˆ Ω; Ωq such that BtΓp0, ¨q “ u. To do so, we reframe this as solving the ODE

#

BtΓpt, xq “ upΓpt, xqq x P Ω, t P p´ε, εq

Γp0, xq “ ηpxq x P Ω.

Then smoothness of the initial data and u allow us to construct Γ P C8pp´ε, εqˆΩ;Rnq solving this system.
The fact that the normal component of v along the boundary vanishes then guarantees that impΓq Ď Ω.
Bijectivity of every such Γpt, ¨q follows from the fact that v is divergence free and thus BtΓ is also divergence
free, so such functions are volume-preserving and thus bijective.
The proof of Equation (2.2) follows similarly. Without the condition that u ¨ ν “ 0, the fixed boundary is
no longer enforced. �

Given the above characterization of these tangent spaces, a natural question to ask is if a path along these
manifolds can be perturbed by a tangent-space-valued velocity field. The following lemma answers this
question affirmatively, showing that for arbitrary divergence free velocity fields and paths η, there exists a
perturbation of η (denoted by ζ) such the derivative of ζ at η is equal to the desired velocity field.
Combined with the decompositions of Section 2.3, this result will be crucial in obtaining many of the
optimality conditions we derive later.

Lemma 2.5. Let v0 : r0, 1s Ñ tv P C8pΩ;Rnq | div pv ˝ η´1q “ 0u be a smooth velocity field with
v0p0q “ v0p1q “ 0, and fix η P C1pr0, 1s,FDiffpΩqq. Set also

η0 :“ ηp0q, η1 :“ ηp1q P FDiffpΩq

Then there exists ε ą 0 and a perturbation ζpsq P C8pp´ε, εq; tη : r0, 1s Ñ FDiffpΩq | ηp0q “ η0, ηp1q “ η1uq

such that ζp0q “ η and Bsζpx, 0, tq “ v0pηpx, tq, tq.

Proof. Consider the following ODE:
$

’

&

’

%

vp0q “ vp1q “ 0

Bsϕpx, s, tq “ vpϕpx, s, tq, s, tq

ϕpx, 0, tq “ x

where we define vpηpx, tq, s, tq “ v0pηpx, tq, tq. This is a flow map ODE associated to v, so we can apply
the Cauchy-Peano Theorem to produce such a solution ϕ.
If we let ζpx, s, tq “ ϕpηpx, tq, s, tq, then clearly ζp0q “ η by the third condition. We also see that

Bsζpx, 0, tq “ vpϕpζpx, 0, tq, 0, tq, 0, tq “ vpζpx, 0, tq, 0, tq

which is exactly what we wanted. In order to check that ζpsq P C8, we can reframe our ODE slightly by
writing s as a function of t, so that sptq ” s for any fixed s, so that s becomes part of the initial data. Our
updated ODE becomes:

$

’

’

’

&

’

’

’

%

vp0q “ vp1q “ 0

Bsϕpx, sptq, tq “ vpϕpx, sptq, tq, sptq, tq

ϕpx, 0, tq “ x

s1ptq “ 0, sp0q “ s
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so in either case we see that ζpx, s, tq :“ ϕpηpx, tq, s, tq satisfies the requirements. �

2.3. The Structure of L2.
We now derive two useful decompositions of L2 that characterize the orthogonal complement of certain
divergence free vector fields.
The first decomposition is the well-known Leray decomposition, which we state as follows.

Theorem 2.6. (Leray Decomposition)
Let

V “ tϕ P C8c pΩ;Rnq | div ϕ “ 0u (2.3)

Let H be the closure of V in L2pΩ;Rnq. Then

H “ tu P L2pΩ;Rnq | div u “ 0, u ¨ ν “ 0u (2.4)

and the orthogonal complement of H in L2pΩ;Rnq satisfies

HK “ t∇p P L2pΩ;Rnq | p P H1pΩqu (2.5)

Proof. See Theorem IV.3.5 of [BF13]. �

Remark. Here the assertion that u ¨ ν “ 0 on Σ (and p “ 0 in the next theorem) should not be confused
with a pointwise result, since the value of an L2 function on a null set is not well-defined. It is understood
by first considering the operator γνpuq “ u ¨ ν on C1pΩ;Rnq and then extending it by linearity to all of
L2pΩ;Rnq. Additionally, the divergence operator here should be understood in the sense of distributions,
meaning that it can operate on arbitrary functions in L2 without any additional assumptions on smoothness.

Theorem 2.7. (A different decomposition of L2)
Let

H 1 “ tu P L2pΩ;Rnq | div u “ 0u (2.6)

Then H 1 is a closed subspace of L2pΩ;Rnq and the orthogonal complement of H 1 in L2pΩ;Rnq is

H 1K “ t∇p P L2pΩ;Rnq | p P H1pΩq, p “ 0 on Σu (2.7)

Proof. The fact H 1 is closed is immediate from continuity of the divergence operator, so it suffices to show
the equality.
Towards doing so, we first write

X “ t∇p P L2pΩ;Rnq | p P H1pΩq, p “ 0 on Σu

Now let u P X; then for all v P H 1 we have

pu, vqL2 “

ˆ
Ω
u ¨ vdx “

ˆ
Ω
∇p ¨ vdx “

ˆ
BΩ
pv ¨ ν ´

ˆ
Ω
p div vdx “ 0

This obviously shows that X Ď H 1K.
Conversely, suppose u P H 1K. Then since H 1 Ě H, we know that H 1K Ď HK, and so by Theorem 2.6, we
know that u “ ∇p for some p. Now given any ψ P C8pRnq, we set ψ̃ “ ψ ´ ´́

BΩ ψ, where ´́Σ ψ “
1
|Σ|

´
Σ

is the average of ψ on Σ, and consider integrating u against v “ ∇ϕ, where ϕ is the solution to the
Laplace-Neumann equation

#

∆ϕ “ 0 on Ω

Bνϕ “ ψ̃ on Σ.

In doing so, we note in particular that such ϕ always exist since
´
BΩ ψ̃ “ 0 and also that the first condition

suffices to show that v P H 1.
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Now we note that we have ˆ
Σ
pψ̃ “

ˆ
Σ
pv ¨ ν “

ˆ
Ω

divppvq

“

ˆ
Ω
∇p ¨ v ` pdivv

“

ˆ
Ω
uv `

ˆ
Ω
pdivv

“ 0

and also that

0 “

ˆ
Σ
pψ̃ “

ˆ
Σ
pψ ´

1

|Σ|

ˆˆ
Σ
p

˙ˆˆ
Σ

˙

“

ˆ
Σ
pψ ´

ˆ
Σ

ˆ

´

ˆ
Σ
p

˙

“

ˆ
Σ

ˆ

p´´

ˆ
Σ
p

˙

Now since ψ was chosen arbitrarily, we thus conclude that p “ ´́
Σ p on Σ, which means that p is constant

on Σ. Setting p̃ “ p´ ´́
Σ p, we find that u “ ∇p̃, where p̃ “ 0 on Σ as desired. �

2.4. Calculus on Hypersurfaces.
In this section we present a few vital theorems on calculus over hypersurfaces. Later, we’ll use the Reynold’s
Transport Theorem on hypersurfaces to perturb the flow map with respect to s rather than with respect
to t. We’ll then use the surface divergence theorem to simplify some terms appearing as a consequence of
Reynold’s Transport Theorem.
Finally, we introduce a lemma that characterizes functions that vanish when tested against arbitrary
divergence free.

Definition 2.8. Given a C2 hypersurface Σ Ď Rn with ν : Σ Ñ Rn the outward pointing unit normal,
f P C1pΣ;Rq and X P C1pΣ;Rnq, we define the surface gradient of f as

∇Σf “ pI ´ ν b νq∇f (2.8)

and the surface divergence of X as

divΣX “ trppI ´ ν b νqDXq. (2.9)

Given the definition of the surface divergence, we have an analog of the traditional divergence theorem but
for surfaces.

Theorem 2.9. (Surface Divergence Theorem)
Let Σ, f, and X be as above. Thenˆ

Σ
fdivΣX dS “ ´

ˆ
Σ
∇Σf ¨X `HX ¨ νf dS (2.10)

where H “ ´div ν is the mean curvature.

Proof. See Theorem 3.2.1 and Remark 4 of [LY02]. Their result appears superficially different, but after
correcting notational differences and by considering the vector field X 1 :“ fX, this form of the surface
divergence theorem is simply a result of the product rule. �

Similarly, we have a version of the Reynolds Transport Theorem, which will be used to differentiate
functionals in later calculations.
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Theorem 2.10. (Reynolds Transport Theorem on Hypersurfaces)
Let Σ be as above and β P C1pΣˆ r0, 1s;Rnq. Set Σptq “ βpΣ, tq.
If f P C1pRn ˆ r0, 1s;Rnq, then

d

dt

ˆ
Σptq

f dS “

ˆ
Σptq

Btf `∇f ¨ u` fdivΣptqu dS (2.11)

where upβpx, tq, tq “ Btβpx, tq.

Proof. See equations (2) and (4) of [Sto90] or page 5 of [HLT08] or Equation (3.4-19) of [EBW91]. �

Finally, the following lemma will be relevant when we consider integration of a particular smooth function
defined on Σ against arbitrary divergence free test functions. If such an integral is always zero, then this
lemma allows us to conclude that the smooth function is some constant multiple of the outward-pointing
normal.

Lemma 2.11. Let Σ “ BΩ Ď Rn be a smooth hypersurface, ν be it’s outward pointing normal, and
X P C8pΣ;Rnq.
Suppose that for all divergence free v P C1pΩ;Rnq we have

ˆ
Σ
X ¨ v dS “ 0. (2.12)

Then X “ c0ν for some constant c0 P R.

Proof. We begin by noting that we can decompose X “ Xν `X‖, where Xν and X‖ are the normal and
tangential components of X respectively. Then X‖ is tangent to Σ, and hence by Lemma 3.5.5 in [Sch95],
we can extend X‖ onto the interior of Ω. In particular, there must exist v which is smooth and divergence

free on Ω and defined on Ω such that v “ X‖ on Σ. By hypothesis, we have that

0 “

ˆ
Σ
X ¨ v dS

so using our decomposition and noting that X‖ ¨Xν “ 0, we find that

0 “

ˆ
Σ
pXν `X‖q ¨ vdS

“

ˆ
Σ
Xν ¨X‖dS `

ˆ
Σ
X‖ ¨X‖dS

“

ˆ
Σ
||X‖||

2dS

Of course, this implies that X‖ “ 0 on Σ, and hence X has no tangential component. In particular, there
exists a smooth f : Σ Ñ R such that X “ fν.
We claim now that f is constant. To see this, consider any mean-zero function g defined on Σ. By solving
Laplace’s equation, we can find ϕ : Ω Ñ R with ∆ϕ “ 0 on Ω, and ϕ “ gν (the normal derivative) on Σ.
Then, define v “ ∇ϕ. Since div v “ ∆ϕ “ 0, we must have that

0 “

ˆ
Σ
X ¨ v dS “

ˆ
Σ
fν ¨∇ϕ dS “

ˆ
Σ
fϕν dS

“

ˆ
Σ
fg dS

In particular, for any mean-zero function g defined on Σ, we have that
´

Σ fg dS “ 0 which allows us to
immediately conclude that f “ c0 for some c0 P R. Thus, X “ c0ν as desired. �
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3. Proofs of Main Results

We now prove the main results as stated in the introduction, beginning with Arnold’s formulation of the
Euler equation.

Proof of Theorem 1.4. Fix any v : r0, 1s Ñ tu P L2pΩ;Rnq | div u “ 0, u ¨ ν “ 0u, and using Lemma 2.5,
set ζpsq P C8pp´ε, εq;Xq to be such that Bs

ˇ

ˇ

s“0
ζ “ v ˝ η.

Using the fact that Epζq must achieve a minimum at s “ 0, we then find that by Fubini,

0 “ Bs

ˇ

ˇ

ˇ

ˇ

s“0

Epζq “

ˆ 1

0

ˆ
Ω
Btη ¨ BtBsζ dxdt “

ˆ
Ω

ˆ 1

0
Btη ¨ Btpv ˝ ηq dtdx.

Integrating by parts in time (and using the fact that v vanishes when t “ 0, 1), this expression then just
becomes

´

ˆ
Ω

ˆ 1

0
B2
t η ¨ pv ˝ ηq dtdx,

which, upon using Fubini and change of variables with ηptq, yields

´

ˆ 1

0

ˆ
Ωptq

B2
t η ˝ ηptq

´1 ¨ v dxdt “´

ˆ 1

0

ˆ
Ωptq
pBtu` u ¨∇uq ¨ v dxdt “ 0

where upηpx, tq, tq :“ Btηpx, tq is the Eulerian velocity of the flow η. Note that because Btηpx, tq “
Btupηpx, tq, tq` upηpx, tq, tq ¨∇upηpx, tq, tq, we have the substitution B2

t η ˝ η
´1 “ Btu` u ¨∇u. This gives us

the last equality.
Since v was chosen arbitrarily, we may again use the Lebesgue differentiation theorem in time and the
Leray Decomposition (Theorem 2.6) to find that

Btu` u ¨∇u`∇p “ 0 (3.1)

for some p : r0, 1s Ñ H1pΩq.
Then using the fact that η is a volume-preserving diffeomorphism of Ω onto itself and Theorem 2.3, we
derive the full set of equations

$

’

&

’

%

Btu` u ¨∇u`∇p “ 0 on Ω

div u “ 0 on Ω

u ¨ ν “ 0 on Σ

(3.2)

as desired. �

We now prove Theorem 1.5, which is a modification to the original Arnold action functional that includes
a globally defined potential energy term ϕ.

Proof of Theorem 1.5. Similar to the proof of the Arnold equation, we have

Bs

ˇ

ˇ

ˇ

ˇ

s“0

Epζq “

ˆ 1

0

ˆ
Ω
ρBtη ¨ BtBsζ ´∇ϕ ¨ Bsζ dxdt “

ˆ
Ω

ˆ 1

0
ρBtη ¨ Btpv ˝ ηq ´∇ϕ ¨ v dtdx

“´

ˆ
Ω

ˆ 1

0
ρB2
t η ¨ pv ˝ ηq `∇ϕ ¨ v dtdx “ ´

ˆ 1

0

ˆ
Ωptq
ppρB2

t ηq ˝ ηptq
´1 `∇ϕq ¨ v dxdt

Now defining ρpx, tq “ ρpη´1px, tqq and using the identity B2
t η ˝ ηptq

´1 “ Btu ` u ¨∇u, we substitute into
the above to find

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E1pζq “ ´

ˆ 1

0

ˆ
Ωptq
pρpBtu` u ¨∇uq `∇ϕq ¨ v dxdt (3.3)

which similarly implies thatˆ
Ωptq
pρpBtu` u ¨∇uq `∇ϕq ¨ vptq dx “ 0 for any divergence free vptq P C8pΩptq;Rnq (3.4)

Using Theorem 2.7, this allows us to find p : r0, 1s Ñ H1pΩq such that

ρpBtu` u ¨∇uq `∇ϕ`∇p “ 0. (3.5)
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Combining these results yields that

$

’

&

’

%

ρpBtu` u ¨∇uq `∇p “ ´∇ϕ on Ωptq

div u “ 0 on Ωptq

p “ 0 on Σptq

(3.6)

as desired. �

We now prove Theorem 1.6.

Proof of Theorem 1.6. Similarly to the previous proof, we first split the action into

E1pηq :“

ˆ 1

0

ˆ
Ω

ρ

2
|Btη|

2
´ ϕpηq dxdt and E2pηq :“

ˆ 1

0

ˆ
Σptq

σ dSdt

and consider v, ζ as before. We first isolate the contribution of E1 by restriction of ζ to perturbations that
are only compactly supported, meaning that Bsζ

1 “ v ˝ η for vptq P C8c pΩptq;Rnq, a condition that suffices
to guarantee BsE2pζq “ 0 since the values along the boundary remain fixed. Then exactly as in Theorem
1.5, we find that

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E1pζq “ ´

ˆ 1

0

ˆ
Ωptq
pρpBtu` u ¨∇uq `∇ϕq ¨ v

which means thatˆ
Ωptq
pρpBtu` u ¨∇uq `∇ϕq ¨ vptqdx “ 0 for any divergence free vptq P C8c pΩptq;Rnq.

Then using the Leray decomposition from Theorem 2.6 again, we have

ρpBtu` u ¨∇uq `∇ϕ`∇p̃ “ 0

for some p̃ : r0, 1s Ñ H1pΩq. Using this equality and the divergence theorem, we can then compute
variations of both energies as

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E1pζq “

ˆ 1

0

ˆ
Ωptq

∇p̃ ¨ v dxdt “
ˆ 1

0

ˆ
Σptq

p̃ν ¨ vdSdt

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E2pζq “ Bs

ˆ 1

0

ˆ
BζpΩ,t,sq

σ dSdt “

ˆ 1

0

ˆ
Σptq

σdivΣptqv dSdt

where in the second equation we use the Reynolds Transport equation on Hypersurfaces (Theorem 2.10).
Continuing the second calculation by using the surface divergence theorem (Theorem 2.9), we then find
the variation of E2 is

´

ˆ 1

0

ˆ
Σptq

∇Σptqσ ¨ v `Hv ¨ νσ dSdt “ ´

ˆ 1

0

ˆ
Σptq

σHv ¨ ν dSdt.

Combining these two terms, we then find that for any divergence free v we have that

0 “ Bs

ˇ

ˇ

ˇ

ˇ

s“0

Epζq “

ˆ 1

0

ˆ
Σptq

p̃ν ¨ v dSdt`

ˆ 1

0

ˆ
Σptq

σHv ¨ ν dSdt

“

ˆ 1

0

ˆ
Σptq
pp̃ν ` σHνq ¨ v dSdt

Thus by Lemma 2.11, for some constant c0 P R`,

p̃ν ` σHν “ c0ν on Σptq

Defining p :“ p̃´ c0, we derive
$

’

&

’

%

ρpBtu` u ¨∇uq `∇p “ ´∇ϕ on Ωptq

div u “ 0 on Ωptq

p “ ´σH on Σptq.

(3.7)
�
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We now prove Theorem 1.7.

Proof of Theorem 1.7. We first write E as E1 ` E2 ´ E3 where

E1pηq :“

ˆ 1

0

ˆ
Ω

ρ

2
|Btη|

2 ´ ϕpηq dxdt (3.8)

E2pηq :“

ˆ 1

0

ˆ
Σ

γ0

2
|Btη|

2 dSdt (3.9)

E3pηq :“

ˆ 1

0

ˆ
Σptq

ξpγq dSdt (3.10)

and consider v, ζ as before.
Again restricting to compactly supported ζ as before to isolate the contribution of E1, we find that as in
Theorem 1.5, there exists p̃ : r0, 1s Ñ H1pΩq such that

ρpBtu` u ¨∇uq `∇ϕ`∇p̃ “ 0 (3.11)

as before. Making this substitution, we now turn our attention back to general ζ. Using the divergence
theorem, we first calculate that

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E1pζq “

ˆ 1

0

ˆ
Ωptq

∇p̃ ¨ v dxdt “
ˆ 1

0

ˆ
Σptq

p̃ν ¨ v dSdt. (3.12)

Then the same calculation along with an integration by parts yields

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E2pζq “

ˆ 1

0

ˆ
Σ
γ0Btη ¨ BtBsζ dSdt

“

ˆ 1

0

ˆ
Σ
γ0Btη ¨ Btpv ˝ ηq dSdt “ ´

ˆ 1

0

ˆ
Σ
γ0B

2
t η ¨ pv ˝ ηq dSdt

Using the identity γ0pxq “ γJΣpx, tq from Equation (1.16), we then get

´

ˆ 1

0

ˆ
Σ
γJΣB

2
t η ¨ pv ˝ ηq dSdt

which, using change of variables with the area form and substituting for the acceleration, is equal to

´

ˆ 1

0

ˆ
Σptq

γB2
t η ˝ ηptq

´1 ¨ v dSdt “ ´

ˆ 1

0

ˆ
Σptq

γpBtu` u ¨∇uq ¨ v dSdt.

Looking at the third term, we have

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E3pζq “ Bs

ˇ

ˇ

ˇ

ˇ

s“0

ˆ 1

0

ˆ
Σ
ξpγ0J

´1
Σ qJΣ dSdt “

ˆ 1

0

ˆ
Σ
ξpγqBsJΣ ´ ξ

1pγqγ0J
´1
Σ BsJΣ dSdt

“

ˆ 1

0

ˆ
Σ
rξpγq ´ ξ1pγqγsBsJΣ dSdt

“

ˆ 1

0

ˆ
Σ
rξpγq ´ ξ1pγqγspdivΣptqppDηBsζq ˝ η

´1q ˝ ηqJΣ dSdt

where change of variables by η yields

“

ˆ 1

0

ˆ
Σptq
rξpγq ´ ξ1pγqγsdivΣptqppDηBsζq ˝ η

´1q dSdt

Recalling that we have σ :“ ξpγq ´ ξ1pγqγ, we have

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E3pηq “ ´

ˆ 1

0

ˆ
Σptq

`

∇Σptqσ `Hνσ
˘

¨ pDηBsζq ˝ η
´1 dSdt (3.13)
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Using Lemma 2.5 again, we know that pDηBsζq ˝ η
´1 can be chosen to be any divergence free vector field

v and hence we have

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E3pηq “ ´

ˆ 1

0

ˆ
Σptq

`

∇Σptqσ `Hνσ
˘

¨ v dSdt (3.14)

Putting all three energies together, we thus find that

0 “ Bs

ˇ

ˇ

ˇ

ˇ

s“0

Epζq

“

ˆ 1

0

ˆˆ
Σptq

p̃ν ¨ v dS `

ˆ
Σptq

´γpBtu` u ¨∇uq ¨ v dS `
ˆ

Σptq
p∇Σptqσ `Hνσq ¨ v dS

˙

dt

We thus have for any divergence free v thatˆ 1

0

ˆ
Σptq

ˆ

´ γpBtu` u ¨∇uq ` p̃ν `∇Σptqσ `Hνσ

˙

¨ v dSdt “ 0

Now by Lemma 2.11, we know that there must exist c0 P R that

´ γpBtu` u ¨∇uq ` p̃ν `∇Σptqσ `Hνσ “ c0ν (3.15)

Defining p :“ p̃´ c0, we find that

γpBtu` u ¨∇uq ´ pν “ ∇Σptqσ `Hνσ (3.16)

By our assumption of conservation of mass, Equation (1.17), we have that, by changing variables twice,

0 “Bt

ˆ
ηpU,tq

γ dS “ Bt

ˆ
U
γpηpx, tq, tqJΣ dS “

ˆ
U
pBtγ ˝ η `∇γ ˝ η ¨ BtηqJΣ ` γ ˝ ηBtJΣ dS

“

ˆ
U
pBtγ ˝ η `∇γ ˝ η ¨ Btη ` γ ˝ ηpdivΣptquq ˝ ηqJΣ dS

“

ˆ
ηpU,tq

Btγ `∇γ ¨ v ` γdivΣptqu dS.

for any U Ď Σ. We conclude

Btγ `∇γ ¨ u` γdivΣptqu “ 0. (3.17)

Putting this all together, we find
$

’

’

’

&

’

’

’

%

ρpBtu` u ¨∇uq `∇p “ ´∇ϕ on Ωptq

div u “ 0 on Ωptq

γpBtu` u ¨∇uq ´ pν “ ∇Σptqσ `Hνσ on Σptq

Btγ `∇γ ¨ u` γdivΣptqu “ 0 on Σptq

(3.18)

as desired. �

Finally, we prove Theorem 1.8.

Proof of Theorem 1.8. Similar to Theorem 1.7 we write E as E1 ` E2 ´ E3 where

E1pηq :“

ˆ 1

0

ˆ
Ω

ρ

2
|Btη|

2 ´ ϕpηq dxdt (3.19)

E2pη, βq :“

ˆ 1

0

ˆ
Σ

γ0

2
|Btpη ˝ βq|

2 dSdt (3.20)

E3pη, βq :“

ˆ 1

0

ˆ
Σptq

ξpγq dSdt (3.21)

Let ζ P C8pp´ε, εq; FDiffpΩqq, B P C8pp´ε, εq;Y q be arbitrary with ζp0q “ η and Bp0q “ β (in other
words, let B be a perturbation of β just as how ζ was a perturbation of η).
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We first only consider perturbations of η, which naturally yield calculations similar to Theorem 1.7. Reusing
the calculation for E1 from that result, we then find that the variation of the second term is

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E2pζ, βq “ ´

ˆ 1

0

ˆ
Σ
γ0B

2
t pη ˝ βq ¨ Bspη ˝ βq dSdt “ ´

ˆ 1

0

ˆ
Σ
γJΣB

2
t pη ˝ βq ¨ v ˝ η ˝ β dSdt

By change of variables with η ˝ β and writing B2
t pη ˝ βq ˝ pη ˝ βq

´1 “ Btus ` us ¨∇us, the above is equal to

´

ˆ 1

0

ˆ
Σptq

γpBtus ` us ¨∇usq ¨ v dSdt.

Looking at the third term, by a similar argument to Theorem 1.7, we have

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E3pζ, βq “

ˆ 1

0

ˆ
Σ
rξpγq ´ ξ1pγqγsBsJΣ dSdt

“

ˆ 1

0

ˆ
Σ
rξpγq ´ ξ1pγqγsJΣpdivΣptqvq ˝ pη ˝ βq dSdt

where change of variable by η ˝ β and the surface divergence theorem (Theorem 2.9) yieldsˆ 1

0

ˆ
Σptq

σdivΣptqv dSdt “ ´

ˆ 1

0

ˆ
Σptq
p∇Σptqσ `Hνσq ¨ v dSdt.

Putting this all together we have

0 “ Bs

ˇ

ˇ

ˇ

ˇ

s“0

Epζ, βq “

ˆ 1

0

ˆ
Σptq

ˆ

p̃ν ´ γpBtus ` us ¨∇usq `∇Σptqσ `Hνσ

˙

¨ v dSdt.

Thus by Lemma 2.11, for some c0 P R we have

p̃ν ´ γpBtus ` us ¨∇usq `∇Σptqσ `Hνσ “ c0ν. (3.22)

Defining p “ p̃´ c0, we find that

γpBtus ` us ¨∇usq ´ pν “ ∇Σptqσ `Hνσ. (3.23)

We now restrict attention to perturbations of β, finding that

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E2pη,Bq “

ˆ 1

0

ˆ
Σ
γ0Btpη ˝ βq ¨ BtpDη ˝ βBsBq dSdt

“´

ˆ 1

0

ˆ
Σ
γJΣB

2
t pη ˝ βq ¨ pDη ˝ βBsBq dSdt

through integration by parts in time. Note that the boundary terms vanish because the perturbation is fixed
at the boundary points. Now we change variables with η ˝β and write B2

t pη ˝βq˝ pη ˝βq
´1 “ Btus`us ¨∇us

so that the expression becomes

“´

ˆ 1

0

ˆ
Σptq

γB2
t pη ˝ βq ˝ pη ˝ βq

´1 ¨ pDη ˝ βBsBq ˝ pη ˝ βq
´1 dSdt

“´

ˆ 1

0

ˆ
Σptq

γpBtus ` us ¨∇vsq ¨ pDη ˝ βBsBq ˝ pη ˝ βq´1 dSdt

where us is the Eulerian velocity for surfactants.
Looking at the third term, by a similar argument in Theorem 1.7, we have

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E3pη,Bq “ Bs

ˇ

ˇ

ˇ

ˇ

s“0

ˆ 1

0

ˆ
Σ
ξpγ0J

´1
Σ qJΣ dSdt “

ˆ 1

0

ˆ
Σ
ξpγqBsJΣ ´ ξ

1pγqγ0J
´1
Σ BsJΣ dSdt

“

ˆ 1

0

ˆ
Σ
rξpγq ´ ξ1pγqγsBsJΣ dSdt

“

ˆ 1

0

ˆ
Σ
rξpγq ´ ξ1pγqγspdivΣptqppDpη ˝ βqBsBq ˝ pη ˝ βq

´1qq ˝ pη ˝ βqJΣ dSdt
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where change of variable by η ˝ β yields

“

ˆ 1

0

ˆ
Σptq
rξpγq ´ ξ1pγqγsdivΣptqppDpη ˝ βqBsBq ˝ pη ˝ βq

´1q dSdt

Recalling that we define σ :“ ξpγq ´ ξ1pγqγ, we have

Bs

ˇ

ˇ

ˇ

ˇ

s“0

E3pη,Bq “ ´

ˆ 1

0

ˆ
Σptq

`

∇Σptqσ `Hνσ
˘

¨ pDpη ˝ βqBsBq ˝ pη ˝ βq
´1 dSdt. (3.24)

Putting these together,

0 “

ˆ 1

0

ˆ
Σptq

ˆ

´ γpBtus ` us ¨∇usq `∇Σptqσ `Hνσ

˙

¨ pDpη ˝ βqBsBq ˝ pη ˝ βq
´1 dSdt. (3.25)

Note B is a one-parameter family of diffeomorphisms of Σ. By choosing arbitrary perturbation, BsB can
represent any vector field on Σ, thus Dpη ˝ βqBsB can represent any vector field on Σptq.
Hence Equation (3.25) implies

´γpBtus ` us ¨∇usq `∇Σptqσ `Hνσ

only has normal components, i.e.

´γpBtus ` us ¨∇usq `∇Σptqσ `Hνσ “ λpx, tqν

for some scalar function λ : Σptq ˆ r0, 1s Ñ R.
But this coupled with Equation (3.23) immediately implies that λ “ p.

Finally as in Theorem 1.7, we have preservation of mass

Btγ `∇γ ¨ u` γdivΣptqu “ 0. (3.26)

Putting this all together, we find
$

’

’

’

&

’

’

’

%

ρpBtu` u ¨∇uq `∇p “ ´∇ϕ on Ωptq

div u “ 0 on Ωptq

γpBtus ` us ¨∇usq ´ pν “ ∇Σptqσ `Hνσ on Σptq

Btγ `∇γ ¨ u` γdivΣptqu “ 0 on Σptq

(3.27)
�
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