2303.08986v1 [cs.LG] 15 Mar 2023

arxXiv

DEEP LEARNING WEIGHT PRUNING WITH RMT-SVD:
INCREASING ACCURACY AND REDUCING OVERFITTING

YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

ABSTRACT. In this work, we present some applications of random matrix theory for
the training of deep neural networks. Recently, random matrix theory (RMT) has
been applied to the overfitting problem in deep learning. Specifically, it has been
shown that the spectrum of the weight layers of a deep neural network (DNN) can
be studied and understood using techniques from RMT. In this work, these RMT
techniques will be used to determine which and how many singular values should
be removed from the weight layers of a DNN during training, via singular value
decomposition (SVD), so as to reduce overfitting and increase accuracy. We show
the results on a simple DNN model trained on MNIST. In general, these techniques
may be applied to any fully connected layer of a pretrained DNN to reduce the
number of parameters in the layer while preserving and sometimes increasing the
accuracy of the DNN.

1. INTRODUCTION

DNNs are a powerful tool in the classification problem, where they determine the
class to which a set of objects S < R™ belongs. In this process, a training set T < R™
with known class labels is used to train the DNN using a loss function (for example
the cross-entropy loss function), with the goal of improving accuracy as loss de-
creases. Accuracy refers to the percentage of correct classifications made by the DNN
for elements in the training or test set. DNNs have been demonstrated to be effec-
tive in solving a wide range of real-world classification problems, including handwriting
recognition [LBD™89|, image classification [KSH17]|, speech recognition [HDY 12|, and
natural language processing [SVL14].

However, a issue that arises when training DNNs is overfitting. Here we say that
a model is overfitting when, as training progresses, it becomes more accurate on the
training set but less accurate on the test set or when the model becomes more accurate
on the training set and plateaus on the test set. In the latter case, the model reaches
a point where it can no longer improve its performance on the test set despite further
training on the training set. This indicates that the model has learned to fit the training
data too well, resulting in poor generalization performance.

Overfitting occurs when the model becomes too complex and starts memorizing the
training data instead of generalizing to new data. This can lead to poor performance
on the test set, even though the training set accuracy is high. To mitigate overfitting,

Department of Mathematics, Penn State University, USA. E-mail address: yms5281@psu.edu,
jtj5311@psu.edu, omk5165@psu.edu.

Code used in this paper is available at https://github.com/jtj5311/NN-RMT-SVD
1

https://github.com/jtj5311/NN-RMT-SVD

2 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

various regularization techniques have been developed, such as dropout |[SHK'14| and
early stopping [Prel2].

In recent years, there has been a growing interest in using RMT for overfitting in
deep learning [MM21]. In this work, we present some applications of RMT for the
training of DNNs. Some numerical experiments will be shown on simple DNN models
trained on MNIST. In general, these RMT techniques can be applied to other types
of DNNs and any fully connected layer of a pretrained DNN to reduce the number of
parameters in the layer while preserving and sometimes increasing the accuracy of the
DNN.

In previous work, such as [XLZ719, YTW™20, XL.G13, [CKXS14, [APJY16]|, thresh-
olding has been used as a method to remove the small singular values of a weight
matrix in a DNN to avoid overfitting. They found that removing small singular values
in weight matrices, through SVD, could lead to improved performance and reduced
overfitting. However, they did not use the Marchenko-Pastur (MP) distribution to de-
termine a threshold, which is the method used in this work. Instead, they used other
methods such as energy ratio threshold and monitoring the test error to determine the
optimal threshold for removing the singular values. We, therefore, study the use of the
MP distribution to find a threshold in deep learning for pruning singular values during
training. A threshold based on MP theory might provide insight into why previous
singular values pruning techniques work as well as improve on pre-existing techniques.
Using a similar threshold method, [STR22| showed how one can improve the accuracy
of DNNs trained on noisy data.

The rest of the paper is organized as follows. In Section 2, we will delve deeper into
the problem of overfitting in DNNs and present some of the commonly used regulariza-
tion techniques to address this issue.

In Section 3, we will provide a more comprehensive overview of RMT, including some
key concepts.

In Section 4, we will present the results of our experiments, where we applied RMT
techniques to DNN models trained on MNIST. These results will demonstrate the effec-
tiveness of using RMT for overfitting in deep learning and the potential for improving
the accuracy of DNNs. It is important to note that in out numerical experiments we
deliberately start with DNNs which are overparameterized with respect to the data set
MNIST and don’t preform well when trained on MNIST. The goal is to see whether
our techniques can be used to reduce the parameters of the DNN, throughout training,
so that it stops overfitting.

Finally, in Section 5, we will provide a summary of our findings and discuss the future
directions for this research. This may include exploring new ways to apply RMT to
deep learning and investigating the scalability of these techniques to larger datasets
and models. It would also be useful to study how RMT can improve on SVD based
DNN regularization, such as nuclear regularization found in [XLZ"19], to provide even
better performance.

This application of RMT to deep learning is an exciting area of research with many
potential benefits. In this work, we hope to shed some light on the potential of this
approach and demonstrate its effectiveness, at least on a small data set with simple
DNNs, in improving the accuracy and reducing overfitting in deep neural networks.

APPLICATION OF RMT TO DEEP LEANING 3

2. PRELIMINARIES

DNNs are a popular tool for solving the classification problem, where a set of objects
S < R" is assigned to one of K classes. The goal is to approximate an exact classifier
¢* which maps s € T' < S to a vector of probabilities (p1(s),...,pr(s)), where p;5) =1
and p; = 0 for j # i(s), and i(s) denotes the correct class of s. The exact classifier
¢* is only known for a training set 1", and so DNNs are trained to approximate ¢* by
constructing a parameterized classifier ¢(a, s) with the aim of extending ¢* from 7" to
all of S via ¢(a, s).

This is achieved by finding parameters a such that ¢(a,s) maps s € T' to the same
class as ¢* while still allowing the classifier to generalize to elements of s € S. The
parameters « are optimized minimizing a loss function, with the goal of improving
accuracy as the loss decreases.

In this work, a DNN is represented as a composition of two functions: the softmax
function p and an intermediate function X (-,). The function X (-, «) is defined as a
composition of affine transformations and nonlinear activations, as follows:

e Mi(-,qy) is an affine function that maps R™V-1 to RV, and depends on a param-
eter matrix W; of size N;_1 x N; and a bias vector §; (i.e. Mj(x) = W;(z)+).

e A :R™+— R™ is a nonlinear activation function. In this paper, we assume that
A is the ReLLU activation function applied to every coordinate.

o X(-,a) =XoMy--- Ao Mj, where k is the number of layers in the DNN. Note,
each A\ here might be different from the other given that the domains of each is
different.

Finally, p is the softmax function, which normalizes the output of X (-,) into prob-
abilities. The components of p are calculated as:

) pils,) = PRl
e exp(Xi(s, a))

The output of the DNN ¢ is a vector representing the probabilities of an object s € T'
belonging to a certain class i. ¢ = ¢(s,a), where a € R is the parameter space of
the DNN and v » 1 is the dimension of the parameter space. The goal is to train the
DNN ¢ to approximate the exact classifier by minimizing a loss function, such as the
cross-entropy loss function

2) L(a) = |,}| S 10g (pige) (5,) -
seT

However, even if the loss function is minimized, it is still possible that the DNN ¢
will not generalize well to new data points s ¢ T'. This is due to the fact that DNNs
have a large capacity to fit the training data and can sometimes fit the noise in the
data, leading to overfitting as will be explained in more detail in Subsection [2.1] To
combat overfitting, several approaches have been developed, including regularization
techniques, such as dropout, early stopping, and weight decay, as well as architectural
choices, such as using smaller networks, or using different activation functions.

2.1. What is overfitting and why it is bad? One of the mathematical concepts
behind the generalization issue in DNNs is the notion of overfitting. Overfitting occurs

4 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

10 o 1.0 o 10y
N

osf * . 08f-T7; 08f %,

EoX
06, 06y v 91* o
N

¢ . [

04f o . = 2 0.4 04F o
* o . - [e®
............

t 2
02f .- = 02} o w2

-02 . s LR] LI . -0.2 02F o ae LA
O e "0t o f ot . .

FIGURE 1. Left figure shows underfitting: too few parameters (e.g., 2
parameters for straight line) making many mistakes on the classification.
Middle figure shows overfitting: too many parameters lead to curve per-
fectly separating orange data from blue, but we are likely to misclassify
new data points. Separating curve captures too many details of the
data when describing the underlying structure of the data. Right figure
shows good fit: not too many parameters are used and not too few.
The classification makes some mistakes, but clearly captures the data’s
underlying structure.

when the model fits the training data too closely and ends up memorizing the training
data instead of learning the underlying patterns in the data. This leads to poor per-
formance on unseen data as the model has not learned to generalize from the training
data to unseen data.

To identify if overfitting is occurring, it is common to monitor the performance of
the model on both the training and test datasets during the training process. If the
model’s performance on the training data continues to improve but the performance on
the test data starts to plateau or even worsen, it is a sign that the model is overfitting.

In such cases, the model has become too specialized in recognizing the features and
patterns present in the training data, to the point where it cannot generalize to new
data. The model has essentially "memorized" the training data, and is unable to extract
more generalized knowledge that can be applied to new, unseen data.

A simple example of overfitting and underfitting can be found in Fig. [II The goal
is to find the separation line between the blue and yellow dots. The figure shows three
cases. In the underfitting case only two parameters define the dashed line. In the
overfitting case, too many parameters define the dashed line. This means that a new
data point from the test set is likely to be misclasified. In this example, a classifier
might have high accuracy on training set and low accuracy on test set. This example
also illustrates how a DNN with too many parameters might overfit. This is because
the ’extra’ parameters might ’learn’ from the randomness in the data, thus learning
structure which is not there.

Thus, this example highlights how a DNN with an excessive number of parameters
can easily overfit due to the extra parameters that might capture random noise in the
data instead of real patterns. Such parameters would be random, meaning that the
overfitting in DNNs might be related to the randomness of parameters in the weight
layers M; of the DNN. There are at least two sources of randomness in a DNN weight

oof **° %e e * ol 0 70 % .
LI JeIVITIOE e .

APPLICATION OF RMT TO DEEP LEANING 5

layer matrix after training. Before training starts, DNN parameters «(0) are chosen
randomly. Then when applying gradient decent (GD) we have an update to the param-
eters given by the following equation:

(3) an+1) = a(n) —7VL(a(n)),

where 7 is the step size. The loss gradient VL(a(n)) is determined by the training
data 7" and so is mostly deterministic, given that the data T is assumed to be deter-
ministic. Thus, the random DNN parameters are gradually replaced with deterministic
parameters. However, the training set 7" is only mostly deterministic. Each object s € T'
is sampled from a random variable, so T’ contains some randomness. Further, because
the parameters « started out being random even after some training they might still
have some random structure to them. In practice, the randomness of a(n) decreases
as n — oo, [MM21], but some randomness remains. As mentioned, DNN parameters
are arranged in weight matrices and bais vectors. Thus, it has been shown that one
can use the well-developed theory of random matrices to study the randomness of the
parameters a and characterize and avoid overfitting, see [MM21], MPM21l, [STR22].

The capacity of a DNN model is also an important concept when studying overfitting.
The capacity of a DNN refers to its ability to fit a wide range of functions. A model with
a high capacity has a large number of parameters and can fit complex functions, while
a model with low capacity has limited parameters and can only fit simpler functions.
The generalization ability of a model is closely related to its capacity. If the model has
too high a capacity, it can easily overfit the training data, while if the capacity is too
low, it will not be able to fit the training data well. The capacity of a DNN is also
related to the double decent phenomena, discussed in Subsection [2.2]

A method to control the capacity of a DNN is through regularization. Regularization
adds constraints to the model that prevent it from overfitting the training data. One of
the most common forms of regularization for DNNs is L1 and L2 regularization, which
add penalty terms to the loss function that encourage the parameters to be small.
Another form of regularization is dropout, which randomly drops out neurons during
training to prevent overfitting.

Finally, the optimization algorithm used to train the model is also relevant to the
generalization problem. The optimization algorithm updates the parameters of the
model in order to minimize the loss function. Common optimization algorithms include
gradient descent, stochastic gradient descent, and ADAM and use the gradient of the
loss function with respect to the parameters to update the parameters. These algorithms
have been proven to be effective for training DNNs, however, the choice of optimization
algorithm or hyperparameters of the optimization algorithm, such as batch size or step
size, can impact the generalization ability of the model, see [MM21].

In conclusion, when one overparameterizes a DNN there is a good chance some of the
extra parameters will retain some random characteristics either because they trained
on the noise in the training set or because they were initially random. Thus, it might
be possible to reduce overfitting in DNNs by removing some of these parameters. This
would also allow us to increase accuracy of DNNs by removing parameters so continuing
training is easier given that the DNN is smaller. For more on the overparameterization
of DNNs, see [MBBI18, [KKB17, [CMR21].

6 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

2.2. Double descent phenomenon. Double descent is a phenomenon in DNNs that
refers to the unexpected behavior of the test error, which initially decreases as model
complexity increases, then increases again before finally decreasing to zero. The first
descent occurs in the underparameterized classical regime when the model starts to
learn the underlying patterns in the training data, while the second descent occurs in
the overparameterized modern interpolation regime when the model has a large number
of parameters. This behavior is counterintuitive because conventional wisdom suggests
that increasing the complexity of the model would lead to overfitting and higher test
error.

The double descent phenomenon has been observed in a variety of deep learning
models, including convolutional neural networks (CNNs), residual networks (ResNets),
and recurrent neural networks (RNNs), among others [BHMMI9, NKB™21) [ASS20]. It
has also been shown to occur across a range of datasets and architectures, indicating
that it is a fundamental property of DNNs.

When the parameters of a DNN grow drastically, the double descent phenomenon
becomes more pronounced [ASS20]. In this regime, the test error first decreases as the
model complexity increases due to the model’s ability to capture more complex patterns
in the training data. However, as the number of parameters continues to increase, the
test error starts to rise due to overfitting. When the number of parameters is very
large, the test error will drop again. One explanation is that DNNs which have many
parameters can learn simple functions as well as complex functions, and may even prefer
to learn simple functions over more complex ones [BHMMI9].

The double descent phenomenon has significant implications for the design and in-
terpretation of DNNs. It suggests that increasing the complexity of the model beyond
a certain threshold can lead to a increase in performance. Moreover, the double descent
phenomenon challenges the conventional wisdom that regularization is always necessary
to prevent overfitting. Instead, it suggests that models can benefit from having a small
amount of overfitting, as it can help the model learn the underlying patterns in the
data.

Overall, the double descent phenomenon highlights the importance of understanding
the fundamental properties of DNNs to design models that can generalize well and avoid
overfitting. As the number of parameters in DNNs continues to grow, it is important
to explore new regularization techniques and model architectures that can harness the
power of large models while avoiding overfitting [BHMM19].

Because of this it is important to find techniques for preventing overfitting and
improving the generalization performance of DNNs. The most common regulariza-
tion techniques include weight decay, dropout, and early stopping. Weight decay and
dropout introduce a penalty on the complexity of the model, while early stopping stops
the training process before the model starts to overfit. These techniques have been
shown to be effective in practice, but they may not be optimal for all problems.

One alternative approach to regularization is to use SVD as a way of lowering the
capacity of the DNN. SVD can be used to decompose the weight matrix of a DNN
into a product of three matrices, which can be used to approximate the original weight
matrix with a lower-rank matrix. This reduces the number of parameters in the model

APPLICATION OF RMT TO DEEP LEANING 7

and can improve its generalization performance. However, SVD can be computationally
expensive and may not be suitable for all architectures.

3. A BRIEF OVERVIEW OF RMT

3.1. Marchenko—Pastur distribution. One of the most important results in RMT
is based on the Marchenko-Pastur (MP) distribution. The MP distribution is a prob-
ability distribution that arises in the study of random matrices. It is a fundamental
result in random matrix theory and has found applications in various fields, including
signal processing, wireless communications, and machine learning, see [Ver18, [GLBP21],
Ser00), [CD11]. The distribution is used to describe the limiting spectral density of large,
random matrices. It provides information about the asymptotic distribution of eigen-
values in a random matrix and predicts the behavior of random matrices under different
conditions. The MP distribution is also used in principal component analysis (PCA)
and other dimension reduction techniques, see [AW10) BS14] Rin0§].

First, we define the empirical spectral distribution (ESD) of a N x M matrix G by:

Definition 3.1.

1 M
(4) Hay = M Z 502"7
=1

with o the ith singular value of G and § the Dirac measure.

Theorem 3.2 (Marchenko and Pastur (1967) [MP67]). Take W to be a N x M random
matriz for M < N with W; ; independent identically distributed random variables from
a distribution with mean 0 and variance o® < 0. Take X = %WTW, then assuming
N — oo and % — ¢ the ESD of X, nx,,, converges weakly in distribution to the
Marchenko-Pastur probability distribution given by:

1 /Oy —2)(x =)

2mo? cx

Lo, de

(6) Ay = o%(1 + /)2

The theorem states that as the dimensions of the random matrix grow, the distri-
bution of its eigenvalues converges to the Marchenko-Pastur distribution. The MP
distribution is a deterministic distribution that depends on two parameters: the vari-
ance of the random variables in the original matrix, o2, and the ratio of the number of
columns to the number of rows, c.

The theorem provides important insights into the structure of large random matrices
and is widely used in deep learning to study overfitting and the generalization of deep
neural networks. For example, it can be used to determine the conditions under which
overfitting occurs and to develop methods for controlling it, see [MY23].

3.2. Spiked Model. A spiked model is a model of a matrix which has some determin-
istic structure and some random structure. One such model is known as the information

8 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

plus noise model. In this model an N x M matrix W is given by:
(7) W =5+R,

with R random and S a deterministic matrix. One way of studying such a model is by
looking at the ESD of the M x M matrix X = %WTW.

Under certain conditions, the large eigenvalues of X (i.e. the eigenvalues bigger than
A+ given in @) correspond to the singular values of S with some deterministic pertur-
bation and are called spikes, see [BGN1I]|. They "bleed out" of the MP distribution to
the right.

Thus, the eigenvalues of the spiked model reflect both the deterministic and random
structure of the matrix. The study of spiked models is relevant in many applications
such as PCA, low rank matrix completion, and portfolio optimization. In essence, the
spiked model gives us a way to understand how the randomness and structure interact
in a matrix. The spikes in the ESD correspond to the deterministic structure of the
matrix S, and the behavior of the spikes can help us understand how much structure
the matrix has compared to randomness.

This makes the spiked model a useful tool for various problems in machine learn-
ing and signal processing, such as PCA, blind source separation, and low-rank matrix
recovery. The idea is that the spikes in the ESD represent the important directions
or structures in the data, and by studying these spikes one can gain insights into the
underlying data.

In practice, the spiked model is also often used to study the robustness of algorithms
that use SVD or PCA as a preprocessing step. The idea is to see how the eigenvalue
spikes behave under different noise levels and how well the algorithms can still recover
the structure in the data. For example, if the spikes are robust to noise, it means that
the structure in the data is well-defined and easily recoverable, while if the spikes are
easily washed out by noise, it means that the structure is not well-defined and harder
to recover.

Erample 3.3. In this example, we create a random N x N matrix R with components
taken from i.i.ds using the normal distribution of zero mean and unit variance (o2 = 1).
We take S to be a N x N deterministic matrix with components given by

. ™ 1 . o o i
(8) Sli, 7] tan(2 + it 1) + cos(i) - log(i + j + 1) + sin(j) cos(j),
W=R+Sand X = %WTW. The BEMA algorithm is used to find the Ay of the ESD
of X, as described in Subsection R is a random matrix satisfying the conditions of
Theorem and so the ESD of %RTR converges to the Marchenko-Pastur distribution
as N — o and has a A\, that determines the rightmost edge of its compact support.
We can imagine a situation in which R is not directly known, and the goal is to find
an estimator of A, from the ESD of X. See Fig. [2| for the result of the ESD of X with
the Marchenko-Pastur distribution that best fits the ESD shown in red.

The bulk of the eigenvalues are well-fit by the MP distribution, but some eigenvalues
bleed out to the right of A;. These eigenvalues correspond to the singular values of S.
The direct calculation of the Ay of the MP distribution corresponding to %RTR gives

APPLICATION OF RMT TO DEEP LEANING 9

15 20
|

Density
10

- A+

>‘U5
—

0.0

I T T I \
0 2 4 6 8

FIGURE 2. In blue we hae the ESD of X, in red the Marchenko-Pastur
distribution which best fits the ESD based on the BEMA algorithm.

A =02 (14+1)% =4, and the A\, obtained to fit the bulk of the ESD of X and the
Ay of %RTR are approximately the same.

3.3. BEMA algorithm for finding A\;. The following is the BEMA algorithm for
finding best fit Ay of %RTR based on the ESD of X. It is used in the analysis of
matrices with the information plus noise structure, where one wants to determine the
rightmost edge of the compact support of the MP distribution. The BEMA algorithm
is computationally efficient and has been shown to provide accurate results for matrices
with the information plus noise structure. The algorithm can be found in [KML21].
Here we present a simplified version of it for R a N x N matrix:

(1) Choose parameters « € (0,1/2),5 € (0,1).

(2) For each aN < k < (1 — a)N, obtain g, the (k/N) upper-quantile of the MP

distribution with ¢2 = 1 and ¢ = 1.

a -
Each gy, is a solution to § 5 (4)\ L. k/N.
0

n —a)N kA . .
(3) Compute 62 = Lansks(iza)N ';f, where)\ is the k' smallest eigenvalue of X.
aN<k<(1—a)N 9k

(4) Obtain t1_g, the (1 — 3) quantile of Tracy-Widom distribution.
(5) Return Ay = 62[4 + 243, 5. N—2/3].

Remark 3.1. The algorithm depends on parameters a € (0,1/2),5 € (0,1). We show
this by varying a and f3 for the case found in Example See Fig. [3aland The red
line is Ay = 4, which is the correct A4 of %RTR. In this example, while dependence
on « is insignificant for sufficiently large values, dependence on 8 allows us to control
the confidence that the eigenvalues of the random matrix R will be smaller than the
estimator for A, of the MP distribution.

10 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

(A) Dependence of algorithm the v
choice of o, 8 = 0.5. In this example (B) Dependence of algorithm on the
the rank of the deterministic matrix S choice of 8, a = 0.25.

is fairly low.

4. RANDOM MATRIX THEORY IN DEEP LEARNING.

As stated in Section [l a DNN is a composition of affine functions M; and non-linear
activation functions. The affine functions M; can be thought of as a N x M matrix W,
of parameters and a bias vector ;. In this work, we only focus on the matrix W; of
parameters. It has been shown that W; can be studied using the spiked model approach
in random matrices, with the ESD of X = %WTW having some eigenvalues which are
bigger than A and some eigenvalues which are smaller than A, see [MM21], STR22].

More specifically, take X;(t) = +Wi(£)TW,(t), with W(t) a N x M weight of Ith
layer matrix at time ¢ of DNN training. Assuming that Wj(t) = R;(t) +S;(t), with R;(t)
random and S;(t) a deterministic matrix, we use RMT to study this spiked model of
Wi (t). One can assume that during training we go from W;(0) = R; (i.e. W} is random)
to Wi(tanal) = Ri(tfinal) + Si(tena1), with ||S;(tana1)|| # 0 and tgna the final training
time. Meaning that as ¢t — tapa1, ||Si(t)|| grows and so Wi(t) becomes less random.

We will use the BEMA algorithm to estimate the value of Ay from the ESD of
X;(t). As the training of DNN progresses, the eigenvalues of X;(t) can for the most
part be expected to fit the MP distribution. However, some of the eigenvalues may
bleed out of the bulk of the MP distribution and correspond to the singular values of
S;(t). The BEMA algorithm aims to find the rightmost edge of the MP distribution,
which determines the value of A;. This is important as A can provide insight into the
behavior of the DNN during training and its ability to generalize to unseen data.

The BEMA algorithm can be used in conjunction with the SVD to determine which
singular values of the weight matrices W; of the DNN should be removed during training.
The SVD decomposes the weight matrix into its singular values and singular vectors,
which can then be analyzed using RMT to determine their distribution. By using
the BEMA algorithm, one can identify the eigenvalues that correspond to the singular
values of S; and distinguish them from the eigenvalues that correspond to the singular
values of R;. These eigenvalues that correspond to R; can then be removed, allowing
for a more effective and efficient training process for the DNN.

APPLICATION OF RMT TO DEEP LEANING 11

4.1. Singular value decomposition in deep learning. Take A to be a N x M
matrix. A singular value decomposition of A is a factorization A = USV’ where:

e U is an N x N orthogonal matrix.

e V is an M x M orthogonal matrix.

e Y is an N x M matrix whose ¢ th diagonal entry equals the ¢ th singular value
o; and all other entries of ¥ are zero.

For); the eigenvalues of a matrix X = WTW we have that o; = 4/); are the singular
values of W. Thus, singular values are related to eigenvalues of the symmetrization of
a matrix W.

For W; of a DNN; it has been shown that removing the small singular values of W,
via its SVD, during the training of a DNN can reduce the number of parameters of
the DNN while increasing accuracy, see [YTW™20, XLG13, [CKXS14, [APJY16]. In
the reminder of this work, we show how using RMT can help determine which are the
singular values to remove from a DNN layer so as to not decrease the accuracy of the
DNN.

Specifically, the BEMA algorithm can be used in combination with the SVD of W; to
determine which singular values to remove from the DNN during training. To do this,
one first computes the SVD of W; and then calculates the eigenvalues of the symmetrized
matrix X; = %VVZTWI. The eigenvalues obtained from the symmetrization can then be
related to the singular values of W; through N\; = O'Z-Q . Using the BEMA algorithm to
estimate the value of A, one can then determine a threshold for the singular values of
W;. The singular values smaller than the threshold can be removed without affecting the
accuracy of the DNN, as they are likely to be less important for the DNN’s performance.
This can be done iteratively during the training of the DNN, as the threshold can be
updated as the training progresses. By using the BEMA algorithm to determine the
threshold, one can effectively reduce the number of parameters in the DNN while still
preserving its accuracy.

4.2. Removing singular values without decreasing accuracy. In this subsection,
we show how SVD can be used to 'cut’ out the random parts of W; without decreasing
accuracy. This might allow us to drastically reduce the number of parameters in the
DNN resulting in possibly faster training and less overfitting.

(1) Obtain a weight matrix W; of a trained DNN.

(2) Perform SVD of W;: W; = UXVT.

(3) Compute the eigenvalues \; of the square matrix %VVZTVVZ

(4) Use the BEMA algorithm from Subsection [3.3|to find the best fit MP distribu-
tion for the ESD of X = %VVZTVVZ and its corresponding A .

(5) Determine if the ESD of X fits the MP distribution. An algorithm for this is
given in Subsection

(6) Determine the number of eigenvalues that fall inside of the MP distribution.

(7) Remove the smallest singular values in the SVD decomposition equal to the
number of eigenvalues determined in step 6.

(8) Replace the singular values with zeros to obtain a new diagonal matrix X'.

(9) Obtain two layers W/ = Uv/S/ and W/ = v/X'VT from the SVD decomposition.

12 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

Empirical Distribution Density Density Comparison Zoomed
B Empirical Density M Tuncated Empirical Density
1200
—— Lambda Plus 2500 Predicted Density
1000
2000
800
1500
600
1000
400
200 500 1

o T T T T T T T o
0.000 0005 0010 0015 0020 0025 0030 0035 0.0000 0.0005 0.0010 0.0015 0.0020

(A) Full Empirical Density (B) Zoomed Density

FIGURE 4. The ESD of X; and its best fit MP distribution

(10) Replace the original weight matrix W; with the two new layers W} and W/,
with no activation function between them.

The algorithm presented here is a method for reducing the number of parameters
in a DNN while maintaining its accuracy. The algorithm uses the technique of SVD
to factorize the weight matrix of a trained DNN, W;, into three matrices: U, X, and
V™. The diagonal matrix ¥ contains the singular values of 1}, which are related to the
eigenvalues of the square matrix VVZTVVZ.

The algorithm then applies the BEMA algorithm to determine which singular values
are likely to correspond to the random parts of the weight matrix. This is done by
fitting the ESD of %VVZTVVZ to a MP distribution and obtaining its corresponding A .
If a certain number of the eigenvalues "bleed" out of the MP distribution, then it is
assumed that these correspond to the non-random parts of the weight matrix.

Finally, the algorithm sets the smallest singular values that are considered to be the
random parts of the weight matrix to 0 and replaces the original weight matrix with
two new layers, W/ = U VY and W/ = VI'VT obtained from the modified ¥’. The
assumption is that by removing the small singular values, only the random parts of the
DNN are being removed, and thus the accuracy of the DNN should remain the same.

Overall, this algorithm presents a promising way to reduce the number of parameters
in a DNN while preserving its accuracy, as it takes advantage of the underlying structure
of the weight matrices to determine which parts can be safely removed. However, a more
detailed justification of the algorithm’s effectiveness will require further research.

Ezample 4.1. We used the above approach for a DNN trained on MNIST. In this
example the DNN has two layers, the first with a 784 x 1000 matrix W; and the second
with a 1000 x 10 matrix W5. The activation function was ReLU. We trained the DNN
for 10 epocs and achieved a 98% accuracy on the test set.

In Fig. [4| the ESD of X; = %WlTVVl is shown together with its best fit MP distri-
bution. Most eigenvalues of X lie inside the MP distribution. We perform a SVD on
W1, in this case X is a 784 x 1000 matrix. Even if we only keep the biggest 20 o; of Wy
and transform the first layer into two layers W{ and WY the accuracy is still 92%. W
had 784,000 parameters, while W7 and W7{ have 15,680 + 20,000 = 35, 680 parameters

APPLICATION OF RMT TO DEEP LEANING 13

(not including the bias vector parameters). This is a reduction by over 90%. In Fig.
we show how the accuracy of the DNN depends on the number of singular values which
we keep. The red line corresponds to the threshold given by the MP distribution (via
A+) for how many of the large singular values should be kept. As the figure shows, this
threshold is highly accurate.

Accuracy Depending on Eigenvalues Kept

100 pommmm——————— -
80
|
5
o
L
40
— Mccuracy
20 —— FPredicted Rank
=== Full Network Accuracy
I

o 20 40 B0 80 100
Number of Eigenvalues Kept

FIGURE 5. Number of eigenvalues kept is shown on the z-axis while the
accuracy is shown on the y-axis.

4.3. Does the ESD of X fit a spiked MP distribution? In this subsection, we
outline an algorithm to determine whether the ESD of X is likely to have came from
a certain MP distribution (potentially with spiked eigenvalues). The basis of this algo-
rithm is formed by first using the BEMA algorithm to determine the best fitting MP
distribution. This best fitting distribution gives a theoretical cumulative distribution
function, and we can compute the cumulative empirical spectral distribution associ-
ated with X. These two distributions can then be compared and we can reject the
claim that X follows the predicted MP distribution if the two distributions differ by
too much. We make these notions precise now, beginning with the definition of an
empirical cumulative spectral distribution.

Remark 4.1. As with any sort of statistical test, we can never prove or assert with
certainty that given empirical data actually was generated according to a prescribed
distribution. Imagine flipping a fair coin 1000 times, and by chance, the coin comes up
heads every time. Any observer who did not know the coin was fair would rightfully
conclude the coin was biased with high probability, but of course, we know the coin to
be fair. In this way, statistical tests can indicate that data was not generated according
to a certain distribution with high probability, but they cannot conclusively state this.

Definition 4.2. Suppose G is a N x M matriz and its ESD pg,, is defined as in
Definition [31. Then the empirical cumulative spectral distribution of G, Fg : R — R,
1s defined as follows:

9) Fg(a) = pa,, ((—2,a])

14 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

As it turns out, the cumulative distribution functions for the MP distribution are
known with a closed form. With these formulas, we are now ready to explain our
algorithm in full. We fix a tuning parameter v € (0,1) which corresponds to the
sensitivity of our test.

(1) Take as input X = %WTW where W is an N x M matrix, and compute the
spectrum of X = {o1,...,00p}.

(2) Compute the empirical cumulative spectral distribution of X, denoted Fx.

(3) Perform the BEMA algorithm with parameters o and 8 to determine 62, the
predicted variance of each coordinate of W.

(4) Compute 0 < dlow < fhigh < M such that ijoy is the smallest integer with
ilﬁ > « and similarly ipig is the largest integer with 228 <1 — a.

(5) Define F% to be the theoretical cumulative distribution function for the MP
distribution with parameters 62 and A = N/M.

(6) Compute s = maxef,, il [Fx (1) — Fx (9)]-

(7) If s > v we reject the claim that X follows the given distribution. If s < v we
do not reject this claim.

In words, this algorithm computes the max difference between the predicted and em-
pirical cumulative distribution functions by sampling at each point in the empirical
distribution. Since this is to be applied for the specific case of testing for spiked MP
distributions, we can use this information to improve our test over naively computing
the L® difference between the predicted and empirical distributions.

This improvement comes in the step which computes iy and ipjgn. Since BEMA
only uses data in the quantile between (a,1 — «) to find the best fit, it makes sense
to only test for fit in the same range. In context, we would expect a spiked MP
distribution to be poorly approximated by its generating MP distribution around the
biggest eigenvalues (i.e., the spiked values), and hence it makes sense to only test the
bulk values for goodness of fit.

4.4. RMT algorithm for training DINNs. The following outlines the steps for im-
plementing a DNN algorithm that helps prevent overfitting.

(1) Begin by training the DNN for a set number of epochs, denoted as ¢.

(2) After £ epochs, perform a singular value decomposition SVD on the layers of the
DNN. Based on the criteria from Subsection [£.2] remove a portion, for example
45%, of the small singular values.

(3) Split the layer into two new layers, as described in Subsection

(4) Only proceed with steps (2)-(4) if the new layers have fewer parameters than
the original layer and the ESD of X = %WZTWI fits the MP distribution as
described in Subsection .3

(5) Continue training the DNN using the new layers. This completes one cycle of
training.

(6) Determine a new value for £ to represent the number of epochs between cycles.

(7) Repeat steps (2)-(5) every £ epochs.

It is important to note that in step 2 we don’t remove all of the small singular values
(i.e. singular values whose corresponding eigenvalues are inside of the MP distribution).

APPLICATION OF RMT TO DEEP LEANING 15

We found that it is crucial to strike a balance between removing the small singular
values and retaining some of them. As mentioned earlier, removing all of the small
singular values might lead to underfitting of the DNN, and thus hinder its ability to
learn the underlying data patterns. On the other hand, keeping some of the small
singular values introduces some randomness in the weight layer matrix W;, which we
found to be beneficial for the DNN’s performance. Therefore, having an appropriate
RMT threshold to determine which singular values to retain and which ones to remove
is beneficial when optimizing the DNN’s learning ability.

4.5. Numerical results on MINIST. We performed the algorithm given in Subsec-
tion [4.4] on a DNNs trained on MNIST. We deliberately overparameterized the DNNs
so that they overfit and trained them to achieve a nearly 100% accuracy on the training
set. We used DNNs with the ReLU activation, the cross-entropy loss function function
and a step size of .05.

Remark 4.2. In our experiments, we seeded the weight matrices of the DNN with
uniformly distributed weights drawn from the range [—1/y/n,1/4/n] , where n is the
number of inputs to the layer. This seeding method has been shown to work well in our
experiments, and is a commonly used technique in deep learning for initializing weight
matrices.

Example 4.3. In this example, we took a DNN with 4 layers. The first layer had a
size 784 x 3000, the second 3000 x 3000, the third 3000 x 500 and the fourth 500 x 10.
We denote such a DNN by [784, 3000, 3000, 500, 10]. It is important to note that, in
all examples, the final layer of the DNN will have a relatively small size (in this case
500 x 10). This is because the ESD of the symmetrization of the final layer normally
does not fit the MP distribution and so will never change. We, therefore, avoid putting
too many parameters in the layer so as to not overfit on its account.

We train two DNNs for 90 epochs. This first, called non-split, is a normal DNN. The
second, called split, performs the algorithm given in Subsection and removes 45%
of the singular values in each layer every 3 epochs and when all conditions are satisfied.
Recall, one of the conditions is that the two new layers, which are formed out of an old
layer, must have fewer parameters than the old layer. This ensures that the split DNN
has fewer parameters than the non-split one. Another condition is that the ESD of the
symmetrization of the layers fits the MP distribution, as described in Subsection [£.3]
We verified numerically that this ensures the accuracy of the DNN does not decrease
when we split a layer into 2. We required a 0.15 goodness of fit, (see Subsection .

Fig. [6] shows the accuracy of both DNNs on a test set. We see that the accuracy
of the non-split DNN plateaus at around 86, a sign that it is overfitting, while the
accuracy of the split DNN peaks at 97.5. Finally, the number of parameters of the
non-split DNN was 12,863,510 while the number of parameters of the split DNN was
3,881,124 (including the parameters of the bias vectors). In fact, the split DNN can
be represented by:

[784, 367, 176,89, 54, 35, 3000, 143, 293, 627, 1366, 629, 294, 139, 3000, 71, 124, 241, 500, 10].

16 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

97.5

9.0

925

875

/,
825 /
80.0 / — Non-Split

! Split
0 5 10 15 20 b3 30

FIGURE 6. Accuracy of split and non-split algorithms on the test set.

Ezxample 4.4. In this example, we stated with a DNN with 5 layers. We denote this DNN
by [784, 1500, 1500, 500, 500, 10]. We train two DNNs for 300 epochs. The first, called
non-split, is a normal DNN. The second, called split, performs the algorithm given in
Subsection and removes 45% of the singular values in each layer every 3 epochs and
when all conditions are satisfied. We require that the ESD of the symmetrization of
the layers fits the MP distribution, as described in Subsection [£.3] In this example,
we required a 0.012 goodness of fit. In Example [£.5] we start with the same original
DNN but require a much weaker goodness of fit of .1 to illustrated some aspects of this
hyper-parameter.

Fig. [7] shows the accuracy of both DNNs on a test set. We see that the accuracy of
the non-split DNN plateaus at around 88, a sign that it is overfitting, while the accuracy
of the split DNN peaks at 97. The number of parameters of the non-split DNN was
4,435,010 while the number of parameters of the split DNN was 2,554, 157. In fact,
the split DNN can be represented by:

[784, 354, 167, 1500, 309, 677, 309, 1500, 228, 500, 105, 227, 107, 500, 10].

100
&0 {F/—‘_—‘
70
: [
—— Non-Split

20 Split

3

]

0 20 40 &0 & 100
FIGURE 7. Accuracy of split and non-split algorithms on the test set.

Finally, in Table [I]and Table [2| we show the ESD of all of the layers of the split DNN
after its second cycle, when it looked like [784, 354, 1500, 677, 1500, 228, 500, 227, 500, 10],
with the A, obtained from the BEMA algorithm. Table[I], shows the ESD of the weight
layer matrices of the split DNN which did not fit the MP distribution and so were not

APPLICATION OF RMT TO DEEP LEANING 17

split into two layers. Table [2] shows the ESD of the weight layer matrices which did
fit the MP distribution. Some of them were split into two layers, based on the criteria
that the two new layers must have less parameters than the original layers, and some
were not split into two new layers. The new DNN looked like:

[784, 354, 1500, 309, 677, 309, 1500, 228, 500, 105, 227, 107, 500, 10]

TABLE 1. ESD of the weight layer matrices of the split DNN which did
not fit the MP distribution and so were not split into 2.

— Lambda Plus.

— Lambda Plus

o B B 8 8 8 B8 3

TABLE 2. ESD of the weight layer matrices of the split DNN which did
fit the MP distribution.

— Lambda Plus

00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14

— Lambda Plus

— Lambda Plus.

0 _— o —
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16

Example 4.5. In this example, we took the same DNN with 5 layers as in Example
We denote this DNN by [784, 1500, 1500, 500, 500, 10]. We train two DNNs for 300
epochs. The first, called non-split, is a normal DNN. The second, called split, performs
the algorithm given in subsection and removes 45% of the singular values in each
layer every 3 epochs and when all conditions are satisfied. We require that the ESD
of the symmetrization of the layers fits the MP distribution, as described in subsection

18 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

This ensures that the accuracy of the DNN does not decrease when we split a layer
into 2. In this example, we required a 0.1 goodness of fit.

Fig. [7]shows the accuracy of both DNNs on a test set. We see that the accuracy of the
non-split DNN plateaus at around 88, a sign that it is overfitting, while the accuracy of
the split DNN peaks at 95 and then falls to 20. This might be a sign that the split DNN
first found a good number of parameters needed to learn the test set but then because
the goodness of fit parameter was not small enough, some important information was
lost during some of the splits. The number of parameters of the non-split DNN was
4,435,010 and the number of parameters of the split DNN was 1,943,563. The final
split DNN can be represented by:

[784, 354,164, 1500, 144, 309, 677, 309, 144, 1500, 107, 228, 500, 51, 107, 227, 107, 53, 500, 10].

100

o] ///'J

70 4

60 4 = Non-Split
Split

20 4

3

=

0 20 a0 &0 & 100
FIGURE 8. Accuracy of split and non-split algorithms on the test set.

Ezxample 4.6. In this example, we started with a DNN with 6 layers. We denote the
DNN by [784,2500, 2500, 2500, 2500, 500, 10]. We train two DNNs for 30 epochs, the
non-split and split versions. The first is a normal DNN. The second performs the
algorithm given in Subsection 4.4] and removes 45% of the singular values in each layer
every 3 epochs and when all conditions are satisfied. We required a 0.05 goodness of
fit on a layer for it to be split.

Fig. [0 shows the accuracy of both DNNs on a test set. We see that the accuracy of
the non-split DNN plateaus at around 86.4 (with 51, 887/60, 000 objects in the test set
classified correctly), a sign that it is overfitting, while the accuracy of the split DNN
peaks at 98.6 (with 59,172/60,000 objects in the test set classified correctly). Finally,
the number of parameters of the non-split DNN was 21,975,510 while the number of
parameters of the split DNN was 13,207, 896. In fact, the split DNN can be represented
by:

[784, 362, 2500, 518,1134, 518, 2500, 518, 1134, 518, 2500, 518, 1134, 518, 2500, 234, 500, 10].

Example 4.7. Next we present an example in which the split DNN and non-split DNN
both overfit. However, the split DNN still performs better.

In this example, we took a DNN with 4 layers. We denote the DNN by [784, 3000, 3000, 3000, 10].
We again train two DNNs for 90 epochs, the non-split and split versions. For the split

APPLICATION OF RMT TO DEEP LEANING 19

100
—— Non-Split
% split

80 \/‘ -

|/

T T T T T
0 2 4 6 8

FIGURE 9. Accuracy of split and non-split algorithms on the test set.

DNN, we remove 45% of the singular values in each layer every 3 epoch and when all
conditions are satisfied. We required a 0.01 goodness of fit (see Subsection on a
layer for it to be split.

Fig. shows the accuracy of both DNNs on a test set. We see that the accuracy
of the non-split DNN plateaus at around 78 while the accuracy of the non-split DNN
peaks at 88. Finally, the number of parameters of the non-split DNN was 20, 391,010
while the number of parameters of the split DNN was 17,716,113. This reduction
in parameters is not as much as we would like, which is probably why we are still
overfitting. The split DNN can be represented by:

[784,361, 3000, 1359, 3000, 1359, 3000, 10].

85

80

s

70

65 /

€0

55 | —— Non-Split
{ Split

50 T

0 5 10 15 20 25 30

FIGURE 10. Accuracy of split and non-split algorithms on the test set.

5. FUTURE WORK

In this work, we have shown the potential of using RMT for reducing overfitting and
improving the accuracy of DNNs. Our experiments on simple DNN models trained on
MNIST demonstrate the effectiveness of RMT techniques for regularization, but there
are several avenues for further research in this area.

One area of future work is exploring the use of different distributions for seeding the
random weight matrices in DNNs. Another area of future work is to develop a better

20 YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

theoretical understanding of the relationship between RMT and overfitting in DNNs.
While our experiments demonstrate the effectiveness of RMT for reducing overfitting
and improving accuracy, a deeper theoretical understanding of this relationship can
help to develop more efficient and effective regularization methods.

Furthermore, applying RMT techniques to different architectures and datasets is an-
other potential avenue for future research. We plan to investigate the scalability of these
techniques to larger datasets and more complex models. For example, incorporating
RMT-based regularization techniques into other neural network architectures, such as
convolutional neural networks or recurrent neural networks, could be an interesting area
of investigation. Additionally, exploring the use of RMT in transfer learning scenarios,
where a pre-trained network is fine-tuned for a new task, may also prove to be useful.

We also aim to further refine this RMT-based algorithm not only for reducing the
complexity of the DNN but also for developing regularization methods to provide even
better performance. This may involve using RMT to determine which singular values
should be regularized to obtain better-performing DNNs.

Another area of interest is investigating the impact of RMT on the interpretability
of DNNs. As deep learning models become increasingly complex and difficult to inter-
pret, there is a growing need for regularization techniques that can help to promote
interpretability. It is possible that RMT-based regularization methods could be used
to encourage sparsity or other desirable properties in the learned representations of a
neural network, which could in turn aid in interpretability.

In conclusion, the use of RMT techniques in deep learning shows great promise for
improving the performance and reliability of DNNs. While there are still many areas
for further research, we believe that this approach has the potential to become a key
tool for regularization and interpretability in deep learning.

REFERENCES

[APJY16] Xing Anhao, Zhang Pengyuan, Pan Jielin, and Yan Yonghong. SVD-based DNN pruning
and retraining. Journal of Tsinghua University (Science and Technology), 56(7):772-776,
2016.

[ASS20] Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of
generalization error in neural networks. Neural Networks, 132:428-446, 2020.

[AW10] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary
reviews: computational statistics, 2(4):433-459, 2010.

[BGN11] Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors
of finite, low rank perturbations of large random matrices. Advances in Mathematics,
227(1):494-521, 2011.

[BHMM19| Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias—variance trade-off. Proceedings of the National
Academy of Sciences, 116(32):15849-15854, 2019.

[BS14] Rasmus Bro and Age K Smilde. Principal component analysis. Analytical methods,
6(9):2812-2831, 2014.
[CD11] Romain Couillet and Merouane Debbah. Random matriz methods for wireless communi-

cations. Cambridge University Press, 2011.

[CKXS14] Chenghao Cai, Dengfeng Ke, Yanyan Xu, and Kaile Su. Fast learning of deep neural
networks via singular value decomposition. In Pacific Rim International Conference on
Artificial Intelligence, pages 820-826. Springer, 2014.

[CMR21]

[GLBP21]

[HDY*12]

[KKB17]

[KML21]

[KSH17]

[LBD*89]

[MBB18]

[MM21]

[MP67]

[MPM21]

[MY23]

[NKB*21]

[Prel2]
[Rin0g]
[Ser00]

[SHK*14]
[STR22|
[SVL14]

[Ver18]
[XLG13]

APPLICATION OF RMT TO DEEP LEANING 21

Omry Cohen, Or Malka, and Zohar Ringel. Learning curves for overparametrized deep
neural networks: A field theory perspective. Physical Review Research, 3(2):023034, 2021.
Jungang Ge, Ying-Chang Liang, Zhidong Bai, and Guangming Pan. Large-dimensional
random matrix theory and its applications in deep learning and wireless communications.
Random Matrices: Theory and Applications, 10(04):2230001, 2021.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal processing magazine, 29(6):82-97, 2012.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learn-
ing. arXiv preprint arXiw:1710.05468, 2017.

Zheng Tracy Ke, Yucong Ma, and Xihong Lin. Estimation of the number of spiked eigenval-
ues in a covariance matrix by bulk eigenvalue matching analysis. Journal of the American
Statistical Association, pages 1-19, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84-90, 2017.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne
Hubbard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation
network. Advances in neural information processing systems, 2, 1989.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding
the effectiveness of sgd in modern over-parametrized learning. In International Conference
on Machine Learning, pages 3325-3334. PMLR, 2018.

Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural
networks: Evidence from random matrix theory and implications for learning. The Journal
of Machine Learning Research, 22(1):7479-7551, 2021.

Vladimir Alexandrovich Marchenko and Leonid Andreevich Pastur. Distribution of eigen-
values for some sets of random matrices. Matematicheskii Sbornik, 114(4):507-536, 1967.
Charles H Martin, Tongsu Peng, and Michael W Mahoney. Predicting trends in the qual-
ity of state-of-the-art neural networks without access to training or testing data. Nature
Communications, 12(1):4122, 2021.

Xuran Meng and Jianfeng Yao. Impact of classification difficulty on the weight matrices
spectra in deep learning and application to early-stopping. Journal of Machine Learning
Research, 24:1-40, 2023.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. Journal of
Statistical Mechanics: Theory and Ezperiment, 2021(12):124003, 2021.

Lutz Prechelt. Early stopping—but when? Neural networks: tricks of the trade: second
edition, pages 5367, 2012.

Markus Ringnér. What is principal component analysis? Nature biotechnology, 26(3):303—
304, 2008.

Vadim Ivanovich Serdobolskii. Multivariate statistical analysis: A high-dimensional ap-
proach, volume 41. Springer Science & Business Media, 2000.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929-1958, 2014.

Max Staats, Matthias Thamm, and Bernd Rosenow. Boundary between noise and informa-
tion applied to filtering neural network weight matrices. arXiv preprint arXiv:2206.03927,
2022.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. Advances in neural information processing systems, 27, 2014.

Roman Vershynin. High-dimensional probability by roman vershynin, 2018.

Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models
with singular value decomposition. In Interspeech, pages 2365-2369, 2013.

22

[XLZ*19]

[YTW*20]

YITZCHAK SHMALO, JONATHAN JENKINS, OLEKSII KRUPCHYTSKYI

Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Wenrui Dai, Yingyong Qi, Yiran
Chen, Weiyao Lin, and Hongkai Xiong. Trained rank pruning for efficient deep neural
networks. In 2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive
Computing-NeurIPS Edition (EMC2-NIPS), pages 14-17. IEEE, 2019.

Huanrui Yang, Minxue Tang, Wei Wen, Feng Yan, Daniel Hu, Ang Li, Hai Li, and Yiran
Chen. Learning low-rank deep neural networks via singular vector orthogonality regular-
ization and singular value sparsification. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pages 678-679, 2020.

	1. Introduction
	2. Preliminaries
	2.1. What is overfitting and why it is bad?
	2.2. Double descent phenomenon

	3. A brief overview of RMT
	3.1. Marchenko–Pastur distribution
	3.2. Spiked Model
	3.3. BEMA algorithm for finding +

	4. Random matrix theory in deep learning.
	4.1. Singular value decomposition in deep learning
	4.2. Removing singular values without decreasing accuracy
	4.3. Does the ESD of X fit a spiked MP distribution?
	4.4. RMT algorithm for training DNNs
	4.5. Numerical results on MNIST

	5. Future Work
	References

